Философские аспекты специальной теории относительности. Философское значение теории относительности. Гносеология Эйнштейна и реальный процесс познания. Опыт и теория у Эйнштейна

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

  • Введение
    • 2. Причины возникновения теорий относительности эйнштейна
    • 3. Теория относительности А Эйнштейна
    • Заключение
    • Список литературы

Введение

Достижения современной науки свидетельствуют о предпочтительности реляционного подхода к пониманию пространства и времени. В этом плане в первую очередь надо выделить достижения физики XX века. Создание теории относительности было тем значительным шагом в понимании природы пространства и времени, который позволяет углубить, уточнить, конкретизировать философские представления о пространстве и времени.

Альберт Эйнштейн, физик-теоретик, один из основателей современной физики, родился в Германии, с 1893 года жил в Швейцарии, с 1914 г. в Германии, в 1933 г. эмигрировал в США. Создание им теории относительности стало самым фундаментальным открытием XX в., оказавшим огромное влияние на всю картину мира,

По мнению современных исследователей, теория относительности ликвидировала всеобщее время и оставила только локальное время, которое детерминируется интенсивностью полей тяготения и скоростью движения материальных объектов. Эйнштейн сформулировал принципиально новые и важные в методологическом отношении положения, которые помогли лучше осознать особенности пространства и времени в различных сферах объективной реальности.

1. Материя, пространство, время

Если сказать, что под материей понимается внешний мир, существующий независимо от нашего сознания, то многие согласятся с таким подходом. Он коррелируется и с представлениями на уровне здравого смысла. И в отличие от некоторых философов, которым казалось несерьезным рассуждать на уровне обыденного мышления, материалисты принимают эту "естественную установку" в качестве основы своих теоретических построений.

Но, соглашаясь с таким предварительным пониманием материи, принимая его как нечто само собой разумеющееся, люди не испытывают чувство удивления и восхищения его глубоким смыслом, богатством методологических возможностей, которые открываются в его содержании. Оценить его значение нам поможет небольшой исторический анализ предшествующих концепций материи, понимания сущности этой категории.

Ограниченность материализма XVIII в. в понимании материи выражалась прежде всего в абсолютизации достигнутых научных знаний, попытках "наделить" материю физическими характеристиками. Так, в трудах П. Гольбаха наряду с самым общим пониманием материи как мира, воспринимаемого с помощью органов чувств, говорится о том, что материя обладает такими абсолютными свойствами, как масса, инерция, непроницаемость, способность иметь фигуру Гольбах П. Система природы // Избранные произведения: в 2-х т. Т. 1. -- М.,1983.-- С. 59--67. .

Это значит, что главным принципом материальности признавалась вещественность, телесность окружающих человека предметов. Однако при таком подходе за пределами материальности оказывались такие физические явления, как электричество и магнитное поле, которые явно не обладали способностью иметь фигуру.

Существовало и понимание материи как субстанции, что особенно характерно для философии Б. Спинозы. "Субстанция - это не мир, окружающий человека, а нечто, стоящее за этим миром, обусловливающее его существование" Спиноза Б. Краткий трактат о Боге, человеке и его счастье // Избранные произведения: в 2-х т. Т. 1. -- М., 1987. -- С. 82 - 83. . Субстанция обладает такими атрибутами, как протяжение и мышление. При этом оставалось, однако, непонятно, как связана единая, вечная, неизменная субстанция с миром изменяющихся вещей. Это давало повод для иронических метафор, сопоставления субстанции с вешалкой, на которую навешиваются различные свойства, оставляя ее неизменной.

Ограниченность понимания материи в его обоих вариантах отчетливо обнаружилась в XIX в. Обычно главной причиной, вызвавшей необходимость перехода к новому пониманию материи как философской категории, называют кризис методологических оснований физики на рубеже XIX и XX вв.

Как известно, наиболее значительным достижением философии марксизма было открытие материалистического понимания истории. Общественное бытие, согласно этой теории, определяет общественное сознание. Однако экономические отношения лишь в конечном счете определяют функционирование и развитие общества; общественное сознание, идеология относительно самостоятельны и также влияют на социальное развитие. Этим марксистская теория отличается от "экономического детерминизма".

В марксистской теории как бы расширяются границы материальности, к которой относятся не только сами предметы с их вещественностью и телесностью, но также свойства и отношения (не только огонь, но и свойство теплоты, не только сами люди, но и их производственные отношения и т.д.). Именно в этом состоит вклад марксизма в понимание материи, который до сих пор недостаточно исследован.

Понимание материи как объективной реальности, существующей независимо от человека и не тождественной совокупности его ощущений, способствовало преодолению созерцательности предшествующей философии. Это вызвано анализом роли практики в процессе познания, которая позволяет выделять новые предметы и их свойства, включенные на данном этапе исторического развития в объективную реальность.

Особенность такого понимания материи состоит в том, что материальными признаются не только телесные предметы, но также свойства и отношения этих предметов. Стоимость материальна, потому что это количество общественно необходимого труда, затраченного на производство продукта. Признание материальности производственных отношений послужило основой материалистического понимания истории и исследования объективных законов функционирования и развития общества.

Можно попытаться найти определенные границы применения таких категорий, как "бытие" и "материя". Во-первых, бытие более широкая категория, так как она охватывает не только объективную, но и субъективную реальность. Во-вторых, бытие и материя могут использоваться для разграничения сущего и существующего (являющегося). Тогда существующее может быть представлено как объективная реальность, осознанная человеком в процессе его деятельности.

В современной методологии научного познания важное место занимают такие понятия, как "физическая реальность", "биологическая реальность", "социальная реальность". Речь идет об объективной реальности, которая становится доступной человеку в определенной сфере его деятельности и на определенном этапе исторического развития.

Философское осмысление мира обычно начинается с разграничения материального и идеального. Но для более полной характеристики изучаемых объектов нужны и другие категории. Среди них важное место занимают категории "движения" и "покоя".

Марксистская философия, опираясь на лучшие традиции предшествующих мыслителей, признает, что весь мир находится в состоянии непрерывного движения, которое внутренне присуще материальным объектам и не нуждается для своего существования во вмешательстве божественных сил, в первотолчке. Движение понимается как философская категория для обозначения любого изменения, начиная от простого перемещения и кончая мышлением. Мир - не совокупность законченных вещей, а совокупность процессов.

Основа социальной формы движения - целесообразная деятельность людей, и прежде всего, по Марксу, "способ производства материальных благ" Маркс К. , Энгельс Ф. Собрание сочинений. Т. 19. -- С. 377. . Человек выступает как объект и субъект истории. В конечном счете история - это деятельность людей, преследующих свои интересы.

Пространство и время как самостоятельные категории появляются уже в философии Древнего Востока, где они рассматриваются наряду с такими первоначалами, как огонь, вода, земля (санкхья). У Аристотеля среди девяти основных категорий называются время, место, положение. В философии Древней Греции начинают складываться основные концепции пространства и времени: субстанциональная и реляционная. Первая рассматривает пространство и время как самостоятельные сущности, первоначала мира; вторая - как способ существования материальных объектов. Такое понимание пространства и времени находит наиболее яркое выражение в философии Аристотеля и Лукреция Кара Асмус В. Ф. Античная философия. 3-е изд. М., 2001. .

В философии Нового времени основой субстанциональной концепции были положения И. Ньютона об абсолютном пространстве и времени. Он утверждал, что абсолютное пространство по своей сущности безотносительно к чему-нибудь внешнему остается всегда одинаковым и неподвижным. Абсолютное время рассматривалось как чистая длительность. Основанием для таких утверждений был опыт классической физики, математические исследования (в частности, геометрия Евклида).

2. Причины возникновения теории относительности эйнштейна

Как же возникла частная (специальная) теория относительности Эйнштейна, сузившая исследование глобального явления до ограниченной, частной относительности, до относительности некоторых базовых понятий, до частного принципа относительности? Почему она вообще возникла и упала на благодатную почву общественного восприятия?

Нельзя не заметить объективные причины появления работ по теории относительности. Они обусловлены "разогретым, революционным" политическим состоянием общества и стихийно, динамично развивающимся естествознанием второй половины XIX - начала XX веков. В то время наука, во многих своих сферах, систематично отвергала один за другим многие стереотипы - общепринятые тогда эталоны представлений, что наложило отпечаток на методологический нигилизм теории относительности в целом.

В значительной степени, на появление теории относительности повлияли авторитетная и ныне философия Иммануила Канта, признанное, наконец, к тому времени учение о бесконечности, а также некоторые математические труды, например неевклидовы геометрии Лобачевского (1792-1856) и Римана (1826-1866), представления о времени Минковского и Пуанкаре. Вышеприведенные причины и как следствие, появившиеся теории относительности Эйнштейна объединяет общее отсутствие методологии познания, объединяет то, что они не противоречиво, но своеобразно трактуют (или не трактуют вообще) базовые, системно образующие их теории понятия и не применяют общенаучных принципов познания. Почему они посмели это сделать? Потому, что эти понятия и принципы были по естественной незрелости науки, методологически не определены их предшественниками. А применение бурно развивающихся к тому времени технологий "обработки понятий познания" (методов логики, математики, физики и т.д.) позволило получать весьма оригинальные итоговые выводы на выходе.

Древнегреческий учёный Птолемей, а затем и Иммануил Кант постулировали зависимость реальности от самого познания. Объект, по Канту, существует как таковой лишь в формах деятельности субъекта. До сих пор, методология познания применяет принцип Канта и Птолемея: "Что вижу то и суть". Приходит на ум притча о четырёх слепцах-мудрецах, которые ощупывали слона. Причём каждый ощупывал слона сугубо в определённых местах: один только ногу, другой только живот, третий хобот, четвёртый хвост. А затем они утверждали в разнобой об "истинности" и "правдивости" познанного ими облика слона. Фактически в подходе к познанию Канта и Птолемея: "Что вижу то и суть", реализован именно такой субъективный подход к познанию и отвергнута возможность объективного познания в сравнении с общепринятыми эталонами - принципами познания Мотрошилова Н.В. Рождение и развитие философских идей: Историко-философские очерки и портреты. М., 1991. .

Понятие бесконечности не определено в общенаучном понятии до сих пор. Это не познаваемое в принципе в величине безотносительное понятие, не имеющее эталона, а значит относительной сравнительной величины.

По этой причине, Минковский определил собственное видение понятия "время". При построении своих "метрических пространств", он ввел понятие синонимичное понятию времени - "плоскость мирового проявляющего процесса", которая "бежит" со скоростью света от произвольно выбранного любого "начала координат". Базисное понятие времени, "подогнали" под имеющийся на вооружении геометрический техпроцесс познания. А современные учёные теперь интенсивно ищут пути и способы путешествий в пространстве-времени.

Симбиоз теорий Минковского и Римана породил четырёхмерную абстрактную интерпретацию пространства - времени, имеющую весьма ограниченную практическую применимость. Например, её нельзя применять для моделирования реальных физических, изменяющихся объектов природы, как функций от изменяющихся их свойств (параметров).

Пространство-время - это интерпретация пространства выхолощенных от размерности событий, имеющих только свойства: пространственные координаты мест возникновения и моменты времени возникновения событий. Свойства пространства и времени несоразмерны друг другу, ибо от изменения одного, причинно-следственно другое не меняется, не зависит. Получается пространство событий, лишённых физической сущности - природы (размерности).

Основанием специальной теории относительности Эйнштейн посчитал сформулированный им принцип относительности, якобы не противоречащий принципу относительности Галилея. Отсутствие в научном арсенале Эйнштейна методологически сформированных понятий "время" и "одновременность", с учётом принятия постулата о глобальном постоянстве скорости света, позволило Эйнштейну "достичь" в специальной теории относительности одновременности событий в различных точках пространства при помощи посылаемых от одного источника к двум объектам световых сигналов, синхронизирующих часы этих объектов, формирующих одинаковую временную шкалу.

По мнению Эйнштейна, формирующих время на часах этих объектов и придав затем объектам различную скорость, он преобразованием Лоренца, математически строго обосновывает, что время в движущихся с различными скоростями объектах течёт по-разному. Что само по себе не только математически но и физически очевидно. Часы в случае такого способа познания "времени", при такой синхронизации будут идти по-разному, ибо шкала времени перестаёт быть единой эталонной для обеих часов "убегающих" по-разному от световых синхроимпульсов шкал времени объектов. А если эталоны шкал разные, то и отношения любой продолжительности любого процесса на объекте к разным эталонам продолжительности будет разное. Системы то познания времени не инерциальные. Если от синхроимпульсов "летящих" со скоростью света "убегать"со скоростью света, то такие часы на объекте вообще остановятся. Эйнштейн пошёл в своём обобщении и выводах намного дальше. Он "кардинально революционно" утверждает, что и длины объектов изменятся и биологические процессы (например, старение в "парадоксе близнецов") будут протекать по-разному в объектах (близнецах), которые двигаются относительно друг друга и относительно источника света с различными скоростями. Фактически Эйнштейн как бы "теоретически обосновал" принцип познания: "Величина свойств познаваемого объекта (например, свойств характеризующих старение, или продолжительность процессов на объекте, или его длины) причинно-следственно зависит от "линейки", от способа, которым эта величина измеряется (познаётся)" Эйнштейн А. Физика и реальность: Собр. научн. тр. Т. 4. - М., 1967. .

3. Теория относительности А. Эйнштейна

Самым фундаментальным открытием XX в., оказавшим огромное влияние на всю картину мира, стало создание теории относительности.

В 1905 г. молодой и никому не известный физик-теоретик Альберт Эйнштейн (1879-1955) опубликовал в специальном физическом журнале статью под неброским заголовком "К электродинамике движущихся тел". В этой статье была изложена так называемая частная теория относительности.

По существу, это было новое представление о пространстве и времени, и соответственно ему была разработана новая механика. Старая, классическая физика вполне соответствовала практике, имевшей дело с макротелами, движущимися с не очень-то большими скоростями. И только исследования электромагнитных волн, полей и связанных с ними других видов материи заставили по-новому взглянуть на законы классической механики.

Опыты Майкельсона и теоретические работы Лоренца послужили базой для нового видения мира физических явлений. Это касается в первую очередь пространства и времени, фундаментальных понятий, определяющих построение всей картины мира. Эйнштейн показал, что введенные Ньютоном абстракции абсолютного пространства и абсолютного времени должны быть оставлены и заменены другими. Прежде всего, нужно отметить, что характеристики пространства и времени будут по-разному выступать в системах неподвижных и движущихся относительно друг друга.

Так, если измерить на Земле ракету и установить, что ее длина составляет, к примеру, 40 метров, а затем с Земли определить размер той же ракеты, но движущейся с большой скоростью относительно Земли, то окажется, что результат будет меньше 40 метров. А если измерить время, текущее на Земле и на ракете, то окажется, что показания часов будут разными. На движущейся с большой скоростью ракете время, по отношению к земному, будет протекать медленнее, и тем медленнее, чем выше скорость ракеты, чем больше она будет приближаться к скорости света. Отсюда следуют некоторые отношения, которые с нашей обычной практической точки зрения являются парадоксальными.

Таков так называемый парадокс близнецов. Представим себе братьев-близнецов, один из которых становится космонавтом и отправляется в длительное космическое путешествие, другой остается на Земле. Проходит время. Космический корабль возвращается. И между братьями происходит примерно такая беседа: "Здравствуй, - говорит остававшийся на Земле, - рад тебя видеть, но почему ты почти совсем не изменился, почему ты такой молодой, ведь с того момента, когда ты улетал, прошло тридцать лет". "Здравствуй, - отвечает космонавт, - и я рад тебя видеть, но почему ты так постарел, ведь я летал всего пять лет". Итак, по земным часам прошло тридцать лет, а по часам космонавтов только пять. Значит, время не течет одинаково во всей Вселенной, его изменения зависят от взаимодействия движущихся систем. Это один из главных выводов теории относительности.

Это совершенно неожиданный для здравого смысла вывод. Получается, что ракета, которая имела на старте некоторую фиксированную длину, при движении со скоростью, близкой к скорости света, должна стать короче. Вместе с тем в этой же ракете замедлились бы и ход часов, и пульс космонавта, и его мозговые ритмы, обмен веществ в клетках его тела, то есть время в такой ракете протекало бы медленнее, чем время у наблюдателя, оставшегося на месте старта. Это, конечно, противоречит нашим обыденным представлениям, которые формировались в опыте относительно малых скоростей и поэтому недостаточны для понимания процессов, которые развертываются с околосветовыми скоростями.

Теория относительности обнаружила еще одну существенную сторону пространственно-временных отношений материального мира. Она выявила глубокую связь между пространством и временем, показав, что в природе существует единое пространство-время, а отдельно пространство и отдельно время выступают как его своеобразные проекции, на которые оно по-разному расщепляется в зависимости от характера движения тел.

Абстрагирующая способность человеческого мышления разделяет пространство и время, полагая их отдельно друг от друга. Но для описания и понимания мира необходима их совместность, что легко установить, анализируя даже ситуации повседневной жизни. В самом деле, чтобы описать какое-либо событие, недостаточно определить только место, где оно происходило, важно еще указать время, когда оно происходило.

До создания теории относительности считалось, что объективность пространственно-временного описания гарантируется только тогда, когда при переходе от одной системы отсчета к другой сохраняются отдельно пространственные и отдельно временные интервалы. Теория относительности обобщила это положение. В зависимости от характера движения систем отсчета друг относительно друга происходят различные расщепления единого пространства-времени на отдельно пространственный и отдельно временной интервалы, но происходят таким образом, что изменение одного как бы компенсирует изменение другого Эйнштейн А. Физика и реальность: Собр. научн. тр. Т. 4. - М., 1967. . Если, например, сократился пространственный интервал, то настолько же увеличился временной, и наоборот.

Получается, что расщепление на пространство и время, которое происходит по-разному при различных скоростях движения, осуществляется так, что пространственно-временной интервал, то есть совместное пространство-время (расстояние между двумя близлежащими точками пространства и времени), всегда сохраняется, или, выражаясь научным языком, остается инвариантом. Объективность пространственно-временного события не зависит от того, из какой системы отсчета и с какой скоростью двигаясь наблюдатель его характеризует. Пространственные и временные свойства объектов порознь оказываются изменчивыми при изменении скорости движения объектов, но пространственно-временные интервалы остаются инвариантными. Тем самым специальная теория относительности раскрыла внутреннюю связь между собой пространства и времени как форм бытия материи. С другой стороны, поскольку само изменение пространственных и временных интервалов зависит от характера движения тела, то выяснилось, что пространство и время определяются состояниями движущейся материи. Они таковы, какова движущаяся материя.

Таким образом, философские выводы из специальной теории относительности свидетельствуют в пользу реляционного рассмотрения пространства и времени: хотя пространство и время объективны, их свойства зависят от характера движения материи, связаны с движущейся материей.

Идеи специальной теории относительности получили дальнейшее развитие и конкретизацию в общей теории относительности, которая была создана Эйнштейном в 1916 году. В этой теории было показано, что геометрия пространства-времени определяется характером поля тяготения, которое, в свою очередь, определено взаимным расположением тяготеющих масс. Вблизи больших тяготеющих масс происходит искривление пространства (его отклонение от евклидовой метрики) и замедление хода времени. Если мы зададим геометрию пространства-времени, то тем самым автоматически задается характер поля тяготения, и наоборот: если задан определенный характер поля тяготения, расположения тяготеющих масс относительно друг друга, то автоматически задается характер пространства-времени. Здесь пространство, время, материя и движение оказываются органично сплавленными между собой.

Особенность созданной Эйнштейном теории относительности в том, что в ней исследуется движение объектов со скоростью, приближающейся к скорости света (300 000 км в секунду).

В специальной теории относительности утверждается, что с приближением скорости движения объекта к скорости движения света "временные интервалы замедляются, а длина объекта сокращается" Кассирер Э. Теория относительности Эйнштейна. Пер. с нем. Изд. второе, 2009. .

Общая теория относительности утверждает, что вблизи больших полей тяготения время замедляется, а пространство искривляется. В сильном поле тяготения кратчайшим расстоянием между точками будет уже не прямая, а геофизическая кривая, соответствующая кривизне гравитационных силовых линий. В таком пространстве сумма углов треугольника будет больше или меньше 180°, что описывается неевклидовыми геометриями Н. Лобачевского и Б. Римана. Искривление светового луча в поле тяготения Солнца было проверено английскими учеными уже в 1919 г. во время солнечного затмения.

Если в специальной теории относительности связь пространства и времени с материальными факторами выражалась лишь в зависимости от их движения при абстрагировании от влияния гравитации, то в общей теории относительности раскрывалась их детерминированность структурой, характером материальных объектов (вещество и электромагнитное поле). Выяснилось, что гравитация влияет на электромагнитное излучение. В гравитации была найдена связующая нить между космическими объектами, основа упорядоченности в Космосе, сделан общий вывод о структуре мира как сферическом образовании.

Теорию Эйнштейна нельзя рассматривать как опровержение теории Ньютона. Между ними существует преемственность. Принципы классической механики сохраняют свое значение и в релятивистской механике в пределах малых скоростей. Поэтому некоторые исследователи (например, Луи де Бройль) утверждают, что теория относительности в определенном смысле может рассматриваться как венец именно классической физики.

Заключение

Специальная теория относительности, построение которой было завершено А. Эйнштейном в 1905 году, доказала, что в реальном физическом мире пространственные и временные интервалы меняются при переходе от одной системы отсчета к другой.

Система отсчета в физике - это образ реальной физической лаборатории, снабженной часами и линейками, то есть инструментарием, с помощью которого можно измерять пространственные и временные характеристики тел. Старая физика считала, что если системы отсчета движутся равномерно и прямолинейно относительно друг друга (такое движение называется инерциальным), то пространственные интервалы (расстояние между двумя близлежащими точками) и временные интервалы (длительность между двумя событиями) не меняются.

Теория относительности эти представления опровергла, вернее, показала их ограниченную применимость. Оказалось, что только тогда, когда скорости движения малы по отношению к скорости света, можно приблизительно считать, что размеры тел и ход времени остаются одними и теми же, но когда речь идет о движениях со скоростями, близкими к скорости света, то изменение пространственных и временных интервалов становится заметным. При увеличении относительной скорости движения системы отсчета пространственные интервалы сокращаются, а временные растягиваются.

Список литературы

1. Алексеев П.В., Панин А.В. Философия: Учебник. - 3-е изд., перераб. и доп. - М.: ТК Велби, Изд-во Проспект, 2003. - 608 с.

2. Асмус В.Ф. Античная философия. 3-е изд. М., 2001.

3. Гольбах П. Система природы // Избранные произведения: в 2-х т. Т.1. - М., 1983. - С.59-67.

4. Грюнбаум А. Философские проблемы пространства и времени. М., 1998.

5. Кассирер Э. Теория относительности Эйнштейна. Пер. с нем. Изд. Второе, 2008.144 с.

6. Кузнецов В.Г., Кузнецова И.Д., Миронов В.В., Момджян К.Х. Философия: Учебник. - М.: ИНФРА-М, 2004. - 519 с.

7. Маркс К., Энгельс Ф. Собрание сочинений. Т. 19. - С.377.

8. Мотрошилова Н.В. Рождение и развитие философских идей: Историко-философские очерки и портреты. М., 1991.

9. Спиноза Б. Краткий трактат о Боге, человеке и его счастье // Избранные произведения: в 2-х т. Т.1. - М., 1987. - С.82 - 83.

10. Философия: Учебник / Под ред. проф. В.Н. Лавриненко. - 2-е изд., испр. и доп. - M.: Юристъ. 2004

11. Философия: Учебник / Под ред. проф. О.А. Митрошенкова. - М.: Гардарики, 2002. - 655 с.

12. Эйнштейн А. Физика и реальность: Собр. научн. тр. Т.4. - М., 1967.

Подобные документы

    Методологическая и мировоззренческая основы субстанциональной и реляционной концепций пространства и времени. Пространство и время в теории относительности А. Эйнштейна. Специфика пространственно-временных свойств в природе и социальных процессах.

    контрольная работа , добавлен 06.02.2014

    Основные субстанции бытия и взгляды философов разных времен. Сущность концепции о формах движения материи Ф. Энгельса. Основное философское значение теории относительности. Изменение физической картины мира. Движение как сущность времени и пространства.

    контрольная работа , добавлен 20.09.2015

    Диалектическое понимание движения материи. Основы концепций пространства и времени. Философское значение специальной теории относительности. Изменчивость и устойчивость как одна из пар противоположностей, определяющих движение. Формы движения материи.

    контрольная работа , добавлен 21.03.2011

    Проблема истинности или ложности теории относительности Эйнштейна, ее философские аспекты. Философская проблема, заключающаяся в адекватном реальности определении таких понятий как "время", "пространство", "движение", "покой". Эйнштейновская абстракция.

    статья , добавлен 07.02.2009

    Пространство и время как основные формы существования материи, их современное понимание и проблема относительности. Сравнительная характеристика, принципиальные отличия субстанциального и реляционного подхода к отношению пространства и времени к материи.

    реферат , добавлен 12.01.2011

    Принципы классификации форм движения. Основные формы движения. Онтологические основы бытия. Свойства и принципы движения в пространстве и времени. Философское значение теории относительности. Источники саморазвития каждой формы движения материи.

    контрольная работа , добавлен 08.08.2011

    Субстанция как объективная реальность. Идея субстанции в античной философии. Рационалистические воззрения Декарта о субстанции с позиций дуализма. Гносеологическое осмысление понятия "субстанция". Философское понимание материи, система ее организации.

    контрольная работа , добавлен 18.08.2009

    История развития науки. Появление мировоззренческих задач, геометрии у древних египтян и шумерской астрономии. Формирование философии. Принцип всеобщей относительности Эйнштейна. Воздействие науки на мировосприятие и ее роль в современном обществе.

    эссе , добавлен 13.01.2014

    Исследование развития взглядов на субстанцию в истории философии. Философское понимание материи. Диалектико-материалистическое учение о субстанции. Система философского материализма. Материальная и идеальная субстанция. Соотношение материи и сознания.

    реферат , добавлен 01.12.2014

    Критерии научного знания в античной натурфилософии: систематизированность, непротиворечивость и обоснованность знания. Взаимосвязь пространства, времени и материи с позиций специальной и общей теории относительности. Управление процессами самоорганизации.

0

Введение.

Актуальность исследования. В конце XIX начале XX веков был сделан ряд крупнейших открытий, с которых началась революция в физике. Она привела к пересмотру практически всех классических теорий в физике. Возможно, одной из самых крупных по значимости и сыгравших наиболее важную роль в становлении современной физики наряду с квантовой теорией была теория относительности А.Эйнштейна.
Создание теории относительности позволило пересмотреть традиционные взгляды и представления о материальном мире. Такой пересмотр существовавших взглядов был необходим, так как в физике накопилось много проблем, которые не могли быть решены с помощью существовавших теорий.
На этом этапе в физике проявились противоречия между классическим принципом относительности и положением об универсальной постоянной, а также между классической механикой и электродинамикой. Было много попыток дать другие формулировки законам электродинамики, но они не увенчались успехом. Все это сыграло роль предпосылок к созданию теории относительности.
Работы Эйнштейна наряду с громадным значением в физике имеют, также, большое философское значение. Очевидность этого следует из того, что теория относительности связана с такими понятиями как материя, пространство, время и движение, а они являются одними из фундаментальных философских понятий. Именно поэтому для философской методологии имеет смысл анализ и рассмотрение не только самой теории Эйнштейна, но и философских воззрений одного из крупнейших ученых XX века. Позицию Эйнштейна в физике можно понять только в свете его общефилософской концепции, в свете того, как он понимал единство законов природы и пути его познания, как он понимал связи, существующие в природе, а также предмет исследования физики. Именно этот факт влияния философии на программу и метод физических исследований есть главная причина интереса к вопросу о том, каковы философские взгляды ученого.
Степень разработанности темы. Автором проведена работа по анализу философской литературы, которую можно классифицировать по следующим группам: историко-философская литература по проблеме взаимосвязи философии и физики (Г. Рейхенбах, С. И. Вавилов, Н. Бор, А. Б. Мигдал, С. Вайнберг, В. В. Ильин, В. С. Готт, В. Г. Сидоров и др.); по философии и методологии науки (в частности, физики) и по проблемам оснований физико-математического знания (в отечественной литературе - В. В. Ильин, В. Г. Сидоров, Е. П. Никитин, А. Н. Кочергин, JI. А. Микешина, В. Н. Вандышев, Е. И. Кукушкина, JI. Б. Логунова, Ю. А.Петров, Ю. Б. Молчанов, С. С. Гусев, Г. Л. Тульчинский, А. С. Никифоров, В. Т. Мануйлов и др.; в зарубежной литературе - С. Грофф, Chalmers A. F., Simon Y. R.,Cornwell S; Stamp S. E. и др.); по истории физики (М. Планк, Д. К. Максвелл, Г. Е. Горелик, И. Д. Новиков, А. В. Шилейко, Т. И. Шилейко, А. М. Мостепаненко, В. И. Григорьев, Г. Я. Мякишев и др.); историко-философская литература по проблемам взаимосвязи философии и физики (М. Г.Лобановский, В. Ф. Асмус, В. И. Шинкарук, Н. Т. Абрамова, И. Б. Новик, С. П. Чернозуб, А. М. Анисов, Dobbs В. J. Т., В. И. Колядко, Р. С. Карпинская, И. К. Лисеев и др.); работы по исследованию философских проблем теории относительности (И. И. Гольденблат, Г. Рейхенбах, К. X. Рахматуллин, В. И. Секерин, Д. П. Грибанов, Л. Я. Станис, К. X. Делокаров, Э. М. Чудинов и др.).
Цель курсового исследования. Целью данной курсовой работы является определение гносеологических корней концепций пространства и времени в теории относительности А. Эйнштейна. Для достижения цели предполагается решение следующих задач:
1. Рассмотрение философских и методологических тенденций в науке начала XX века;
2. Раскрытие особенностей Эйнштейнова подхода к пониманию статического и динамического времени, материального и математического пространства.
Научная новизна работы отражается в положениях, выносимых на защиту:
1. Раскрытие философских особенностей теории Эйнштейна;
2. Определение методологических оснований работы ученого;
3. Определение философско-мировоззренческой картины мира мыслителя, послужившей базисом для развития концепции теории относительности.

1. Проблема определения философских воззрений Эйнштейна.

Как ответить на вопрос о том, какая же философия вела Эйнштейна, кто он по своим философским взглядам — материалист, идеалист или позитивист? На этот вопрос нельзя дать однозначного ответа: в его трудах можно найти достаточно высказываний в пользу любого направления.
Известно, например, что Эйнштейн высоко оценивал критическую работу Маха в отношении априорных идей Канта или введения Ньютоном в обиход классической физики понятий абсолютного пространства, времени, движения, вообще метафизических понятий, которым в опыте, как его понимает Мах, ничего не сопоставляется. Эйнштейн неоднократно заявлял, что концепция Маха помогла ему критически осмыслить исходные положения классической физики. Неоднократно также Эйнштейн определял теорию как систему упорядочения наших чувственных восприятий, а не как отражение объективных закономерностей внешнего мира. Эти формулировки не случайны для Эйнштейна, они встречаются в его работах на протяжении всей его жизни. Так, в лекциях об основах теории относительности, читанных и Принстонском университете в 1921 г., он утверждал, что понятие и системы понятий ценны для нас лишь постольку, поскольку они облегчают нам обозрение комплексов наших переживаний. В 1936 г. в статье Физика и реальность Эйнштейн писал: В противоположность психологии, физика истолковывает непосредственно только чувственные восприятия и „постижение" их связи. И далее: Я считаю, что первый шаг в установлении „реального внешнего мира" состоит в образовании понятия телесных объектов и телесных объектов различных видов. Из всего многообразия чувственных восприятий мы мысленно и произвольным образом выделяем постоянно повторяющиеся комплексы чувственных восприятий (частично в совпадении с чувственными восприятиями, которые могут истолковываться как знаки чувственного опыта других людей) и мы сопоставляем им понятие телесного объекта. В книге Эволюция физики сказано: С помощью физических теорий мы пытаемся найти себе путь сквозь лабиринт наблюденных фактов, упорядочить и постичь мир наших чувственных восприятий. Наконец, в его автобиографии мы встречаем: ...Всякое наше мышление— того же рода: оно представляет свободную игру с понятиями. Обоснование этой игры заключается в достижимой при помощи нее возможности обозреть чувственные восприятия. Понятие „истины" к такому образованию еще совсем не применимо; это понятие может, по моему мнению, быть введено только тогда, когда имеется налицо условное соглашение относительно элементов и правил игры. И далее: Система понятий есть творение человека, как и правила синтаксиса, определяющие ее структуру... Все понятия, даже и ближайшие к ощущениям и переживаниям, являются с логической точки зрения произвольными положениями, точно так же как и понятие причинности, о котором в первую очередь и шла речь.
Таковы суждения Эйнштейна, в которых несомненно обнаруживается влияние позитивистской философии. Однако известно и другое. Мы помним, что позитивистские взгляды Оствальда и Маха Эйнштейн назвал философскими предубеждениями, помешавшими им найти правильное истолкование фактам, приводящим к признанию атомов и молекул. Далее. Свое несогласие с идеями квантовой механики, в частности с введением ею статистической закономерности наряду с динамической, Эйнштейн мотивировал тем, что переход от описания самих вещей к описанию вероятностей появления вещей есть переход к позитивизму. Критикуя аргументацию в пользу квантовой механики, он в?Ответе на критику (1949) писал: Что мне не нравится в подобного рода аргументации,— это, по моему мнению, общая позитивистская позиция, которая, с моей точки зрения, является несостоятельной и которая, по моему мнению, ведет к тому же самому, что и принцип Беркли — esse est percipi (существовать — значит быть воспринимаемым). Эйнштейн считал, что защита статистической трактовки квантовой механики есть защита позитивистских взглядов. Даже в дружеской переписке Эйнштейн выступает против позитивизма. В конце сороковых годов, говоря о желательной встрече с Борном, он писал ему: Хотя ты никогда не согласишься с моей точкой зрения, она тебя могла бы позабавить. Я бы тоже получил удовольствие, разбив твои позитивистские философские взгляды. Но вернемся к Эйнштейну. Это, конечно, серьезный довод, чтобы не признавать Эйнштейна позитивистом, если он отклонял целое направление в физике, огромное практическое значение которого он всегда и безоговорочно признавал, отклонял из-за того, что считал его основу позитивистской. Другое дело, прав ли Эйнштейн, толкуя квантовую физику как по существу своему позитивистскую; в данном случае существенно подчеркнуть, что, отклоняя ее, он руководствовался антипозитивистскими мотивами.
Крайне интересное понимание процесса познания высказано Эйнштейном в статье Влияние Максвелла на эволюцию идей о физической реальности, написанной к столетию со дня рождения Максвелла в 1931 г. Эту статью он начинает со следующего утверждения: ?Вера в существование внешнего мира, независимого от воспринимающего субъекта, есть основа всего естествознания. Но так как чувственное восприятие дает информацию об этом внешнем мире, или о „физической реальности", только опосредованно, мы можем охватить последнюю только умозрительными средствами. Из этого следует, что наши представления о физии ческой реальности никогда не могут быть окончательными. Мы всегда должны быть готовы изменить эти представления, т. е. изменить аксиоматическую базу физики,— чтобы оправдать факты восприятия логически наиболее совершенным образом. И действительно, беглый взгляд на развитие физики показывает, что она испытывает глубокие изменения с течением времени.
Это высказывание по духу близко к материализму, и трудно понять, как Эйнштейн совмещает столь противоположные точки зрения. Однако он не только их совмещает, но и отлично при этом сознает, какое недоумение может вызвать это совмещение. Но он относит это недоумение за счет философов, которые-де слишком жестки в своих концепциях, представляющих собой, правда, цельную, но все же абстрактную схему. Естествоиспытателя же невозможно уложить в какую-либо схему. Его положение, по Эйнштейну, сложнее потому, что он должен считаться с результатами своих исследований и принимать точки зрения, несовместимые в одной системе. В своем Ответе на критику он пишет, что философ, однажды додумавшийся до какой-то системы, ...будет склонен интерпретировать богатство идей точных наук в смысле своей системы и не признавать того, что под его систему не подходит. Ученый же не может себе позволить, чтобы устремления к теоретико-познавательной систематике заходили так далеко. Он с благодарностью принимает теоретико-познавательный анализ понятий, но внешние условия, которые поставлены ему фактами переживаний, не позволяют ему при построении своего мира понятий слишком сильно ограничивать себя установками одной теоретико-познавательной системы. В таком случае он должен систематизирующему философу-гносеологу показаться своего рода беспринципным оппортунистом».
Эйнштейн по разным поводам подчеркивает невозможность для естествоиспытателя придерживаться какой-либо одной философской системы. Отвечая Маргенау по поводу его утверждения о том, что позиция Эйнштейна... содержит черты рационализма, а также крайнего эмпиризма, Эйнштейн в Ответе на критику пишет: Это замечание совершенно правильно. Откуда происходит эта флуктуация Логическая система понятий является физикой постольку, поскольку ее понятия и утверждения необходимо приведены в связь с миром переживаний (experiences). Тот, кто желает установить такую систему, встретится с опасным препятствием в виде произвола выбора. Вот почему стараются по возможности прямо и необходимым образом связать свои понятия с миром переживаний. В этом случае взгляды исследователя эмпиричны. Этот путь часто плодотворен, но он всегда открыт для сомнений в силу того, что отдельное понятие и единичное утверждение может выражать нечто сопоставляемое с эмпирически данным в конечном счете только в связи с целостной системой. Тогда признают, что никакого пути от данного в опыте к миру понятий нет. Тогда взгляды исследователя становятся скорее рационалистическими, потому что он признает логическую независимость системы. В такой позиции возникает опасность того, что при поисках этой системы можно потерять всякий контакт с миром переживаний. Колебания между этими крайностями кажутся мне неустранимыми.
Конечно, нельзя согласиться с неизбежностью для естествоиспытателя выглядеть в глазах философа беспринципным оппортунистом? и находиться в вечном, неустранимом колебании между философскими крайностями. Если философия существует как наука, а не как предвзятая схема, то в ней непротиворечивым образом должны быть обобщены такие категории, как объективный внешний мир, ощущения как информации о нем, понятия и теории как обобщение информации, представляющие собой образ объективной реальности. Мы убеждены, что такая философия существует.
Однако правильнее будет рассматривать взгляды Эйнштейна во всей их сложности и постараться понять, откуда эта сложность появилась. И тут он сам дал хороший совет, как относиться к самооценкам ученого. В интересной спенсеровской лекции О методе теоретической физики (1933) он говорил: ?Если вы хотите кое-что выяснить у физиков-теоретиков о методах, которые они применяют, я советую вам твердо придерживаться одного принципа: не слушайте, что они говорят, а лучше изучайте их действия. Тому, кто в этой области что-то открывает, продукты его творческого воображения кажутся ему столь необходимыми и естественными, что он рассматривает их не как создания мышления, а как данные реальности. И ему хотелось бы, чтобы так их рассматривали и другие.
Изучать действия ученых — это справедливый совет. Профессиональная деятельность накладывает глубокий отпечаток на весь образ мышления ученого, да и вообще любого деятеля. Через это окно профессиональной деятельности он видит мир, его внешний облик, его закономерности, способ его постижения. Чего достиг ученый в науке, как ему представляется путь к этому достижению,— в этом лежит разгадка его подчас сложного противоречивого мировоззрения. Здесь, по нашему мнению, лежит ключ к пониманию взглядов и самого Эйнштейна, противоречивость которых с точки зрения целостной философии он понимал и сам. Но в таком случае мы должны будем ответить на вопрос: что же было главным в профессиональной деятельности Эйнштейна
Вряд ли можно сомневаться в том, что при всех замечательных идеях Эйнштейна в области квантовой и статистической физики, основной стороной его деятельности всегда были (и оставались главными для него самого) развитие теории относительности и его, эйнштейновская, система обобщения и расширения сферы применения этой теории. Электромагнитные и гравитационные поля, еще только становившиеся в годы его юности реальностями для физиков, пространственно-временной континуум, как единая теоретическая основа для всей физики,— вот круг тесно связанных друг с другом проблем, которые с ранних пор и до конца жизни владели Эйнштейном, в развитие которых была вложена его душа и его разум.
Работа над этими проблемами и метод их решения как раз и оказали решающее влияние на взгляды Эйнштейна. Мы должны, следовательно, попытаться рассмотреть вопрос о том, к каким философским идеям могла привести и, по-видимому, привела Эйнштейна его разработка теории относительности и раздумье над ее результатами.

2. Рациональные пути построения физической теории.

Итак, профессиональный опыт Эйнштейна утверждает его в мысли, что понятия органически связаны с теорией, через нее получают свое содержание и оправдание. А теория отражает мир лишь как целое. Возникает вопрос: как же строится сама теория
Мах, служивший Эйнштейну стимулирующим примером критика абсолютных категорий ньютоновой физики, отвечал на этот вопрос просто. Понятие—чисто психическое образование. Характерная черта понятия — это воспоминание о постоянном комплексе восприятий и выделение в нем главных восприятий, по которым вспоминается весь комплекс (абстрагирование, по Маху). Научные теории имеют своей целью упорядочить множество фактов восприятий, которые без такого упорядочения невозможно удержать в памяти.
Теория, по Маху, не заключает в себе ничего более, чем все отдельные факты восприятия, она есть только экономичная запись их ради облегчения памяти. Эйнштейн не мог пойти в этом вопросе за Махом. Он уже увидел в теории нечто большее, чем только сжатую запись фактов восприятий: она дает картину мира, его связи, которые непосредственно в фантах восприятий усмотреть нельзя. Не дает этой картины и теория, построенная на физических экспериментах. Пример такой теории Эйнштейн усматривал в теории тяготения Ньютона. Она дала многое, но ведь Эйнштейну пришлось ее реформировать, поскольку она содержала много понятий, не нужных для обобщенной совершенной теории. Такая теория хотя и имеет внешнее оправдание, поскольку объясняет опыт, но она внутренне несовершенна.
Необходимость преобразования классической теории тяготения и успешный опыт построения новой реформированной теории подсказывали ему вывод: непосредственный опыт не ведет к однозначной теории.
Эйнштейн уже давно пришел к этому выводу и руководствовался им в теоретической работе, но наиболее резко сформулировал его в Творческой автобиографии, в которой обозревал пройденный путь: Теория тяготения научила меня и другому: собрание эмпирических фактов, как бы обширно оно ни было, не может привести к таким сложным уравнениям. На опыте можно проверить теорию, но нет пути от опыта к построению теории.
Здесь мы видим и прямую ссылку на свой профессиональный опыт, на свой метод построения теории тяготения (значение профессионального опыта мы подчеркивали выше) и резкое отрицание пути от опыта к построению теории. То, что содержит опыт, и взаимные соотношения опытных данных находят свое выражение только в выводах теории; выводы теории действительно должны соответствовать опыту, иначе теория окажется пустой схемой. Здесь опыт выступает лишь как мера оценки теории и лишь после того, как теория создана.
Но если от опыта нет путей к построению теории, то каково же ее происхождение В лекции О методе теоретической физики Эйнштейн говорил: В том, что такое отражение возможно, состоит единственная ценность и оправдание всей системы и особенно понятий и фундаментальных законов, лежащих в ее основе. В остальном эти последние суть свободные изобретения человеческого разума, которые не могут быть оправданы ни природой этого разума, ни каким-либо другим видом априори. Физик отыскивает такие фундаментальные понятия и законы, которые дальше логически несводимы. Важнейшая цель теории состоит в том,— продолжал Эйнштейн,— чтобы этих несводимых элементов было как можно меньше и чтобы они были как можно проще, однако так, чтобы это не исключало точного отображения того, что содержится в опыте?.
Здесь мы видим выражение двух важных гносеологических идей, которые Эйнштейн считал выводом из своего метода построения теории тяготения. Первая идея состоит в том, что понятия и теории суть свободное изобретение разума, вторая — в том, что задача теоретика состоит в отыскании несводимых далее простейших элементов, фундаментальных понятий, которые должны быть положены в основу теории.
Идея о том, что понятия и теории суть свободные изобретения разума — не случайное высказывание Эйнштейна, Эту идею можно найти почти во всех его работах, в которых обсуждаются методологические проблемы, начиная со статей периода построения теории тяготения, продолжая книгой Эволюция физики, написанной для массового читателя, и кончая его Творческой автобиографией.
Постижение роли теории как целостности, в которой каждая физическая категория играет служебную роль,— большое достижение современной теоретической мысли. Труды Эйнштейна, — впрочем, не только его — сильно способствовали усвоению этой истины.
Но мы видели, что Эйнштейн отрицал путь от опыта к построению теории. Тот путь, который подсказывал Мах, не мог удовлетворить Эйнштейна. При всей своей высокой оценке маховской критики априорных понятий ньютоновой физики Эйнштейн не мог принять тезис позитивизма о существовании только мира ощущений, о понятиях как психических образованиях, о теориях как экономной записи все тех же фактов восприятии. Эйнштейн сам создавал теории, и вовсе не таким путем, какой указывал Мах; весь профессиональный опыт Эйнштейна выражал внутренний протест против маховского опрощения проблемы происхождения понятий и теорий. Он вел к более глубоким выводам.
Если образование теории — не такая опрощенная операция с фактами восприятий, комплексами восприятий, как указывал Мах, а логический процесс, в результате которого возникает целостная логическая система, выводы которой совпадают с новыми комплексами ощущений, то это действительно вселяет веру в существование внешнего мира, независимого от воспринимающего субъекта, в то, что и теория, и ощущения выражают именно этот мир.
Однако именно то, что подняло Эйнштейна над позитивизмом, привело его к рационализму. В самом деле, вдумаемся в его обоснование того, почему неизбежны колебания между эмпиризмом и рационализмом. Вот Эйнштейн констатирует нечто новоевпознании: исследователи приходят к выводу, что?отдельное понятие и единичное утверждение может выражать нечто сопоставимое с эмпирически данным в конечном счете только в связи с целостной системой. Но тогда признают, что никакого пути от данного в опыте к миру понятий нет. Тогда взгляды исследователя становятся скорее рационалистическими. Таким образом, Эйнштейн сам признает, что к рационализму его привело именно раскрытие роли теории как целостности.
Известны высказывания Эйнштейна, в которых он выражал симпатии к выдающемуся рационалисту XVII века — Спинозе. Но, пожалуй, его метод ближе к рационализму старшего современника Спинозы — Декарта.
Как в наше время Эйнштейн брал за образец научного метода геометрический метод Евклида и математики вообще (Эйнштейн говорит об этом и в лекции О методе теоретической физики и в Творческой автобиографии), так и свое время и Декарт опирался на геометрический метод (как известно, геометрия была профессией Декарта, он положил начало аналитическим методам в ней). В?Рассуждении о методе для руководства разума и отыскания истины в науках (1637) Декарт писал: ?Те длинные цепи простых и легких рассуждений, которыми обычно пользуются геометры, чтобы дойти до своих наиболее трудных доказательств, дали мне случай представить себе, что все вещи, способные стать предметом знания людей, стоят между собою в такой же последовательности. Если таким образом остерегаться принимать за истинное что-либо, что таковым не является, и соблюдать всегда порядок, в каком следует выводить одно из другого, то нет таких отдаленных вещей, которых нельзя было бы достигнуть, и таких сокровенных, которых нельзя было бы открыть. В этой рационалистической схеме Декарта все вещи стоят между собой в той же последовательности, что и в геометрии, и в ней логические следствия его схемы совпадают с опытом. Декарт (как и Эйнштейн в наше время) искал исходные предпосылки познания, из которых он мог бы вывести все знание: Я старался найти принципы или первые причины всего, что существует или может существовать в мире... Потом я исследовал первые и самые обыкновенные следствия, которые можно вывести из этих причин: и кажется мне, что таким путем я нашел небо, светила, звезды и на них воду, воздух, огонь, минералы и некоторые другие предметы, наиболее общие и простые, а потому и более доступные познанию.
Как известно, Декарг признал невозможным практически провести эту логическую нить до самых отдаленных вещей, ибо хотя вещи и стоят между собой в геометрической последовательности, эта последовательность в каком-то пункте становится неоднозначной, и какая ветвь из этих последовательностей реализована в природе,— человеческий разум логически не может решить. Следовательно, обратить их в нашу пользу можно, только восходя от следствий к причинам и производя множество различных опытов. Декарт верил в рациональную структуру мира, но он признал, что отразить ее в мышлении возможно только в принципе, практически же необходимо восходить от следствий к причинам. Позиция Эйнштейна отличается тем, что в этом вопросе он не шел ни на какие компромиссы.
Рационализм Эйнштейна отличен от классического и в другом отношении. В классическом рационализме (Декарта) все следствия выводятся из начальных принципов, они развертываются в последовательную цепь, в которой каждое звено вытекает из предыдущего и каждое из них может быть сопоставлено с реальным миром.
Эйнштейн же исходил из того, что физическая теория представляет собой замкнутую логическую структуру и потому может быть проверена только в целом, в ее конечных выводах. Следовательно, теория не развертывается в последовательную цепь следствий, в которой может быть проверено каждое звено. До получения конечных выводов исследователь творит теорию чисто логически. В самом процессе создания теории разум следует по своим законам; Эйнштейн настойчиво подчеркивает, что теория — свободное изобретение разума; рационализм доведен им до предела.
При обсуждении гносеологических проблем Эйнштейн не выдвигает в качестве решающего критерия познания активное взаимодействие человека с внешним миром, изменение внешнего мира на основе познания.
Он сравнивает выводы теории с миром восприятий, довольствуясь сознанием того, что восприятия как-то связывают человека с внешним миром.
Как относится свободно созданная разумом теория к внешнему миру —это можно судить по тому, как она объясняет, упорядочивает мир восприятий, который несомненно вызывается в нас внешним миром. Подтверждение последнего факта Эйнштейн видит не в целеустремленном взаимодействии с внешним миром, а в том, что наши восприятия имеют надличный (или внеличный) характер, т. е. одни и те же восприятия при одинаковых обстоятельствах присущи не одному человеку, а ряду людей.
Таким образом, по Эйнштейну, теория возникает не из опыта, а свободно изобретается разумом на основе более или менее совершенного отбора понятий —кирпичей фундамента— и, минуя внешний мир, накоротко замыкается непосредственно с миром восприятий, с тем надличным, что в нем встречается, объясняет и упорядочивает его. Это замыкание теории непосредственно на мир восприятий оставляет большую свободу в конструировании теорий. Эйнштейн рассуждал так: раз теория в целом должна отвечать фактам восприятий, то части ее могут быть произвольным, свободным изобретением разума, однако в данной теории необходимыми. Этим он объясняет тот, на первый взгляд парадоксальный, факт, что хотя математика (геометрия) имеет дело с идеализированными объектами (и потому она всегда верна), все же она необходима для познания действительности. Это находит объяснение в следующем положении Эйнштейна, которое он высказал в докладе Геометрия и опыт на торжественном заседании Прусской академии наук в 1921 г.: Геометрия (Г) ничего не говорит о соотношении действительных предметов, и только геометрия вместе с совокупностью физических законов (Ф) описывает это соотношение. Выражаясь символически, мы можем сказать, что поверке опыта подлежит только сумма (Г) + (?). Таким образом, в действительности можно по произволу выбрать как (Г), так и отдельные части (Ф); все эти законы являются условными. Для избежания противоречия необходимо только, чтобы оставшиеся части (Ф) выбрать таким образом, чтобы опыт оправдывал совместно (Г) и полное (Ф).
Идея эта принадлежит Пуанкаре, но Эйнштейн признал, что?такое воззрение Пуанкаре совершенно правильно. В этой идее, в противоречие с изложенным ранее взглядом на теорию, явно реализуется позитивистский тезис: теория есть система упорядочения чувственных восприятий, и таких систем упорядочения может быть множество. Чтобы это стало очевидным, напомним рассуждения позитивиста Рейхенбаха в его Philosophical Foundations of Quantum Mechanics (1946) в связи с обсуждением им вопроса о том, существуют ли в физике ненаблюдаемые. Этот вопрос, говорит Рейхенбах, аналогичен вопросу: существует ли дерево, когда на него перестают смотреть Ответ, по Рейхенбаху, может быть любым: можно предположить исчезновение дерева либо его удвоение, утроение и т. д., но важно соблюдать одно правило: каждому предположению должна соответствовать такая конструкция физических законов, которая оправдывала бы во всех случаях восприятие одной тени. Это будут различные, но правомерные описания ненаблюдаемого; в гносеологии Рейхенбаха они составляют класс эквивалентных описаний. Что происходит в действительности, для Рейхенбаха несущественно, для него действительность есть только факт данного восприятия (одной тени дерева).
По существу, такого же представления о возможности многих эквивалентных описаний чувственных восприятий придерживается Эйнштейн. Однако, в отличие от позитивистов, Эйнштейн признает, что чувственные восприятия идут от внешнего мира, который, следовательно, существует. Но сам внешний мир представляется Эйнштейну загадкой.
Он находит эту идею — мир есть загадка — очень ценной и указывает, что она идет от Канта. В Ответе на критику Эйнштейн пишет: Я не был воспитан в традициях Канта и довольно поздно пришел к пониманию того действительно ценного, что имеется и его учении, наряду с заблуждениями, которые теперь совершенно очевидны. Оно заключено в утверждении: реальное нам не дано, а загадано (в виде загадки). Это, очевидно, означает: для охвата межличного существует умозрительная конструкция, основание которой лежит исключительно в ней самой. Эта умозрительная конструкция относится именно к реальному (по определению), и все дальнейшие вопросы о природе реального бессодержательны.
Более популярно эта концепция была изложена в книге?Эволюция физики?. В ней авторы пишут: ?Физические понятия суть свободные творения человеческого разума и не однозначно определены внешним миром, как это иногда может показаться. В нашем стремлении понять реальность мы отчасти подобны человеку, который хочет понять механизм закрытых часов. Он видит циферблат и движущиеся стрелки, даже слышит тиканье, но он не имеет средств открыть их корпус. Если он остроумен, он может нарисовать себе некую картину механизма, которая отвечала бы всему, что он наблюдает, но он никогда не может быть вполне уверен в том, что его картина единственная, которая могла бы объяснить его наблюдения. Он никогда не будет в состоянии сравнить свою картину с реальным механизмом, и он не может даже представить себе возможность или смысл такого сравнения. Но он, конечно, уверен в том, что по мере того, как возрастает его знание, картина реальности становится все проще и проще и будет объяснять все более широкий ряд его чувственных восприятий. Он может даже верить в существование идеального предела знаний и в то, что человеческий разум приближает этот предел. Этот идеальный предел он может назвать объективной истиной. Теперь перед нами вполне законченная картина мира и путей его познания, как представлял их Эйнштейн. В этой картине действительна отведено место всем философским направлениям — реализму и позитивизму, рационализму и кантиантству, и несомненно — элементам ряда других философских направлений. Эйнштейн видел в этом достоинство философских взглядов естествоиспытателя, выражение необходимости для него считаться не с односторонней философской схемой, а с реальным разносторонним процессом познания.
В этой главе мы проследили, как зарождалась гносеология Эйнштейна из его понимания собственного опыта построения физических теорий. В следующей главе мы рассмотрим вопрос о том, оправдалась ли эта гносеология, когда он стал руководствоваться ею в трактовке уже созданных физических теорий, а также в разработке новых.

3. Гносеология Эйнштейна и реальный процесс познания. Опыт и теория у Эйнштейна.

Итак, в ходе развития теории относительности и обобщенной теории тяготения Эйнштейн выработал некоторое методологическое оружие, теорию познания естествоиспытателя.
От опыта нет пути к построению теории. Понятия и теории имеют не опытное происхождение, но и не априорное. Они суть свободное изобретение разума, которое оправдывается только в сопоставлении конечных выводов теории с опытом. Естествоиспытатель отбирает минимальное число простейших „кирпичей" для фундамента и на этом концептуальном фундаменте строит внутренне наиболее совершенную теорию. Непосредственная цель теории — упорядочение наших восприятий. Если это достигается, то мы можем полагать, что построенная нами теория в какой-то мере соответствует внешнему, всегда закрытому от нас миру, соответствует постольку, поскольку восприятия являются следствием протекающих в нем процессов.
Такова схема познания Эйнштейна. Главное, что отличает метод познания Эйнштейна,— это отрицание пути от опыта к построению теории. Вместе с тем это отрицание является наиболее слабым пунктом его гносеологии.
Но, может быть, это отрицание есть случайная, хотя и повторяющаяся оговорка великого физика, критиковать которую было бы делом недостойным Разве не известно, что Эйнштейн даже в тот период, когда разрабатывал свои обобщающие теории, опирался на опыт, например на экспериментальный факт равенства тяжелой и инертной масс Разве Эйнштейн (совместно с Инфельдом) не показал в Эволюции физики, как под влиянием открытия новых фактов возникают новые представления и понятия, как в особенности возникло и утвердилось понятие поля — основное в физике Эйнштейна
Все это несомненно так. И тем не менее ссылка Эйнштейна на опыт отнюдь не изменяет обрисованной выше рационалистической схемы его познания, в которой существенным является отбор концептуального фундамента и построение теории на его основе. Иначе говоря, отдельные ссылки Эйнштейна на опыт не означают, что его вывод — нет пути от опыта к построению теории?— случайная для него оговорка. Это станет ясным, если рассмотреть наиболее общую форму связи физической теории с экспериментом и сравнить ее с той ролью, какую опыт играет в трудах Эйнштейна.
Физическое познание начинается с установления некоторых экспериментальных соотношений, определенным образом связывающих физические категории (понятия, величины) друг с другом (причем сущность категорий в этих соотношениях всегда определяется в свете существующих теорий). Эти экспериментальные соотношения могут казаться (опять-таки в свете существующих теорий) даже противоречащими друг другу.
Но поскольку они представляют собой проявления одного и того же типа объектов, необходимо возникает задача: найти логическое условие их совместности, обобщить их. Следовательно, сущность обобщения такого рода состоит в рассмотрении экспериментальных фактов совокупно как единой логически связанной системы, в отыскании условий совместности результатов различных экспериментов. В физике эти условия формулируются в виде математических уравнений или неравенств. Их отыскание, разумеется, трудный и подчас болезненный процесс, иногда затягивающийся на долгие годы. Результатом этого процесса и является теория.
Отношение между совокупностью экспериментальных фактов и теории взаимно. Иначе говоря, теория должна быть таким обобщением экспериментально установленных соотношений, что из нее при определенных условиях должны вновь возникать ie же соотношения, которые привели к образованию leopmi. Но этого требования для подлинной теории недостаточно. Теория не просто суммирует экспериментальные соотношения, которые стали известны исследователю, но она (в полную противоположность Маху) выходит за их пределы, раскрывая через них объективные связи природы. И если эти объективные связи действительно раскрыты правильно, то теория неизбежно приведет к раскрытию и таких соотношении, которые существуют в природе объектов, но еще не были известны исследователю. В этом заключается эвристическое значение теории.
Она не пассивно суммирует уже известный опыт, а дает новое знание, расширяет возможности опыта. Теория есть нечто большее, чем простая сумма единичных опытов.
Именно поэтому в марксистской философии теория с полным основанием рассматривается как образ объективной реальности.
Указанный путь обобщения узловых экспериментов есть наиболее общий и глубокий путь образования теории. Он фактически и реализуется во всех плодотворных физических теориях, хотя это не всегда осознается.
Таким именно путем создавалась квантовая механика, а также и теория относительности (?специальная?). И такое обобщение фактически реализовал сам Эйнштейн, который в те годы еще не выработал своей особой концепции познания и шел стихийным путем. Не следует забывать, что Эйнштейн отталкивался от классической теории Максвелла, в которой уже были обобщены экспериментальные факты в области электромагнетизма, установленные его предшественниками. Но теория Максвелла оказалась неполным обобщением; необходимо было учесть еще и такие факты, как симметричность (относительность) электромагнитных взаимодействий и независимость скорости света от движения его источника. Это дальнейшее обобщение и выполнил Эйнштейн, что и привело его к теории относительности.
Подобный путь обобщения труден, но он — единственно возможен, и он всегда плодотворен по своим результатам. Мы не можем здесь входить в детальное рассмотрение так понимаемой теории и ее связи с экспериментом, но отметим еще два существенных момента.
Теория опирается на определенный круг однозначно установленных экспериментальных соотношений. Условие совместности этих соотношений также всегда однозначно. Это означает, что теория выступает как однозначный образ внешнего мира как в целом, так и в своих частях.
Могут получиться различные формы теории; при уточнении они оказываются эквивалентными, как это было, например, в отношении матричной и волновой форм квантовой механики. Процесс обобщения, приведший к теории относительности (специальной), был настолько однозначен, что к его результату продвигался не один Эйнштейн, но и другие физики, в особенности Лоренц, Пуанкаре. Лоренц вопреки личным симпатиям, как свидетельствует Макс Борн, был вынужден отказаться от механистической идеи о существовании особого носителя электромагнитных процессов — эфира; он же, как известно, вывел существенные для теории относительности уравнения преобразований, получившие его имя, и вынужден был ввести в инерциальных системах местное время?, хотя и не понимал его смысла. Пуанкаре всего несколькими месяцами позже Эйнштейна опубликовал статью О динамике электрона (1906) в которой по существу были все необходимые элементы теории относительности. Словом, экспериментальные факты в начале нашего века с неизбежностью подводили всех физиков к однозначному теоретическому обобщению —теории относительности. Далее. Теория, являющаяся формулировкой условий совместности экспериментальных фактов, в силу своей природы опирается только на установленные экспериментальные соотношения и не предполагает заранее никаких определенных представлений о свойствах объекта или определенных типов связей, действующих в объекте. Последние могут быть получены лишь в результате отыскания условий совместности экспериментов, т. е. в результате выработки физической теории. Это очень важное свойство данного метода образования теорий, ибо оно означает, что данный метод не навязывает исследователю никаких априорных представлений ни об объекте, ни о действующих в нем связях; в силу этого он является необходимым и наиболее общим способом раскрытия в объекте новых свойств и нового типа связей, притом его выводы реализуются с принудительной силой, часто вопреки навыкам и психологическому сопротивлению исследователя.
Рассмотрим теперь ту роль, какая отведена опыту в схеме познания Эйнштейна. Эта роль двоякая. Об одной из них Эйнштейн говорит ясно: выводы теории должны совпадать с опытом, без этого теория превращалась бы в пустую схему. Это положение бесспорно. Но это — апостериорная, контрольная функция опыта. Она отбирает адекватные объекту теории среди всех созданных, содействуя тем развитию науки в целом, но она не ведет непосредственно к построению теории.
Опыт играет в схеме Эйнштейна и другую роль. В схеме построения теории Эйнштейна нетрудно заметить два этапа: на первом он конструирует концептуальный фундамент, а на втором —создает на его основе теорию. Но откуда он берет понятия для фундамента Эйнштейн утверждает, что понятия (как и теория) — продукт свободного изобретения разума. Но, конечно, он не придумывает их произвольно, а фактически отбирает, отбирает среди тех, которые по каким-то основаниям уже возникли в физике. Мы не будем здесь исследовать этот процесс возникновения понятий и их последующего закрепления или же отклонения. Эйнштейн (и Инфельд) показали этот процесс в Эволюции физики. Ясно, что в возникновении физического понятия опыт играет определенную (однако не непосредственную, не в смысле позитивизма или операционализма) роль. У Эйнштейна он играет роль и в отборе понятий для концептуального фундамента (равенство тяжелой и инерциальнои масс). Но это совсем не та роль, какую играет опыт, когда отыскивается единственно возможное условие совместности экспериментов. Эйнштейн прав: та роль, какую он сам отводит опыту, не дает ему возможности найти пути от опыта к построению теории. Она вполне совмещается с концепцией теории как продукта свободного изобретения разума, со всеми вытекающими отсюда следствиями, а именно, что одни и те же факты могут отображаться разными теориями, что одна теория отличается от другой различными концептуальными фундаментами, положенными в основу теории, что помимо критерия внешнего оправдания теории существует еще критерий внутреннего совершенства и т. п.
Идея множественности теорий, отображающих одни и те же факты, но отличающихся тем, что они построены на основе различных концептуальных фундаментов, не подтверждается реальным процессом познания. Нет оснований считать, что две теории тяготения —Ньютона и Эйнштейна —относятся к одному и тому же кругу фактов, но только по-разному их упорядочивают, поскольку-де первая имеет несовершенный концептуальный фундамент, а вторая —совершенный. Классифицировать эти теории приходится по-иному. Обе эти теории стоят не рядом друг с другом, как неоднократно подчеркивал Эйнштейн, а в определенном отношении друг к другу, и вторая охватывает более широкий круг фактов, чем первая. Теория тяготения Ньютона справедлива только для скоростей, малых сравнительно со скоростью слета, и потенциалов, малых сравнительно с квадратом скорости света. Обобщенная теория тяготения Эйнштейна охватывает также и области больших скоростей и шленциалов, а при малых их значениях принимает форму ньютоновой теории.
Обе теории представляют собой различные степени углубления познания природы. Нельзя, следовательно, утверждать, что концептуальный фундамент и сама теория свободно конструируются разумом. Замечание Борна по этому поводу (см. стр. 560) было справедливым. Нельзя принять и идею о том, что мир есть и навсегда будет для нас загадкой. Если корпус мирового механизма наглухо закрыт от нас и никогда не раскроется, то предъявляемые к теории требования становятся не столь жесткими, поскольку внешнее оправдание ее конечных выводов фактически сводится при этом только к той или иной степени упорядочения наших восприятий. Эта концепция лишает теорию однозначной достоверности, что неоднократно признавал и.
Но реальные знания человека развиваются вовсе не так: сегодня нет никаких теорий, а завтра будет теория, охватывающая весь замкнутый в себе мир, корпуса механизма которого мы вскрыть никогда не сможем. Человек создает теории, относящиеся не к миру как целому, а к отдельному кругу явлений природы. При этом он непрерывно взаимодействует с природой, как до создания теории, так и после. Он создает теорию на основе взаимодействия и проверяет свои теоретические выводы о ней через взаимодействие, через практику. В результате этого человек непрерывно расширяет и углубляет свои связи с природой. Это и есть процесс познания природы. Это и есть раскрытие корпуса мирового механизма. Только игнорируя это постоянное взаимодействие с внешним миром, исследователь может утверждать, что его теория — продукт свободного изобретения разума. К чему это игнорирование привело на практике самого Эйнштейна, мы увидим позже, а пока рассмотрим, к какому результату оно приводит в самой теории познания. В логическом аспекте физическая теория представляет собой некоторую связь физических категорий или понятий. Отобрав „кирпичи" для фундамента, Эйнштейн приступает к построению теории, устанавливая некоторую связь между отобранными понятиями. Но какие же типы связей он использует Только типы связей, выражаемые дифференциальными уравнениями, для поля — в частных производных. Следовательно, гносеология Эйнштейна исходит из заранее определенного типа причинных связей, приписываемых внешнему миру: это — однозначная непрерывная связь событий, смежных во времени и пространстве. Опора на связи этого типа для Эйнштейна неизбежна, ибо других связей он не знает и ему неоткуда почерпнуть знание о них, поскольку он не рассматривает условия совместности различных экспериментов. Игнорирование этого метода, раскрывающего реальные связи в природе, и вынуждает Эйнштейна неявным образом постулировать, что внешний мир подчиняется связям именно указанного типа.
Выходит, что априоризм, правомерность которого Эйнштейн подверг справедливой критике, стремясь освободить от него классическую физику, выступает в теориях Эйнштейна в новой форме: теперь априорный характер приобретают уже не отдельные физические категории, а определенный тип закономерных связей, характерный для классической физики.
Но откуда следует, что мир должен подчиняться именно тому типу связей, который известен исследователю в период разработки им теории или по каким-то причинам наиболее близок его духу А что если внешний мир и в самом деле обладает закономерностями иного типа, как получить об этом информацию? Не выступает ли здесь принятый метод познания как препятствие познанию
Это именно так и есть. Это — противоречие, но оно неизбежно для рационализма, как классического, так и современного. Но классический рационализм для своего времени был прогрессивным течением, поскольку он выступал против догм, утверждавших, будто истина дана только в церковных книгах, и выдвигал идею, что творческий разум человека в состоянии прочитать ее в книге самой природы. В наше время богословские догмы преодолены и рационалистическая философия лишь тормозит познание: она не в состоянии раскрыть в природе связи нового типа.
И если Эйнштейн на определенном этапе раскрывал их, то, как сказано выше, раскрывал потому, что фактически применял не рационалистический метод познания.
Итак, Эйнштейн признавал опыт, но он недооценивал его гносеологическое значение, его существенную роль в построении теории. Он использовал опыт так, что допускал возможность множественности теорий, описывающих один и тот же круг фактов, и исключал возможность познания объективных связей и свойств нового типа.

4. Квантовая теория и гносеология Эйнштейна.

Можно ли было создать теорию квантовых явлений тем путем, который Эйнштейн признал единственно правильным Безусловно, нет.
Метод Эйнштейна включал в себя правильное положение о том, что теория отображает определенную совокупность явлений внешнего мира только как целое, определяя смысл и содержание используемых в ней понятий (физических категорий). Мы помним, что осознание этого факта привело его к отходу от позитивизма Маха и операционализма Бриджмена. Но метод Эйнштейна включал в себя также и требование предварительного отбора простейших понятий для концептуального фундамента, из которого затем должна рационалистическим путем развиваться теория; он заранее предопределял также и тип связей между физическими категориями.
Но как можно было сказать заранее, какие понятия среди выработанных классической физикой могут быть отобраны для фундамента и применены в теории квантовых явлений? И можно ли было использовать в ней классический тип связей? Первый период накопления фактов в этой области с несомненностью обнаружил невозможность отобрать заранее исходные понятия и тип связей между ними, чтобы затем строить теорию рационалистическим методом. Это было слишком очевидно. Нужно было искать другой путь к теории. И физики нашли его, не сразу, не без колебаний, конечно.
Если отбросить то субъективное, что привносили и привносят в изложение и трактовку квантовой теории отдельные авторы, и кратко сформулировать объективную суть метода, которым создавалась квантовая механика, то эта суть может быть выражена следующим образом.
В области атомных явлений физики встретились с рядом узловых экспериментальных фактов, необычных и даже странных с точки зрения уже известных классических законов. Исследователь должен исходить из этих экспериментальных соотношений и рассмотреть их совокупно как единую логическую систему. Он заранее не может делать никаких предположений ни о природе физических объектов и их состояниях, ни о характере их взаимосвязей, заранее не может строить никаких определенных моделей исследуемого мира. Он не отбирает для фундамента никаких наипростейших понятий и не изменяет их смысла заранее, до образования теории; в каждом отдельном эксперименте он просто использует уже сложившиеся понятия, понятия классической физики.
Чем он еще должен руководствоваться, так это положением, что при определенных физических условиях — когда квантом действия можно пренебречь — любая новая теория должна принимать форму уже испытанной классической теории. Это — так называемый принцип соответствия.
Но и принцип соответствия не является принципом, навязываемым природе извне, императивно; по существу он тоже выражает опытный факт — достоверность законов классической физики при определенных, классических условиях.
Так в результате обобщения узловых экспериментальных фактов атомной физики устанавливается их логическая взаимосвязь, условие их совместности — квантовая теория. Природу физических объектов и их состояний, равно как и природу их взаимосвязей, физик принимает такими, какими они оказываются в результатах обобщенной теории.
Они, безусловно, уже не те, что были в классических теориях; требование соблюдения условий совместности, новой совокупности экспериментов, т. е. новая теория, наложило свой отпечаток на природу категорий и связей между ними. Поскольку созданная таким путем квантовая теория подтверждается и последующими экспериментами, предсказывает новые, еще не встречающиеся в лабораториях физиков, и. кроме того, удовлетворяет еще и принципу соответствия, она рассматривается как теория, адекватная внешнему миру, так же как адекватными представляются и все ее составные элементы и установленные в ней взаимосвязи.
Таким образом, в области атомных явлений был применен именно такой метод образования теорий, который позволил раскрыть в природе новое, позволил выйти за пределы уже известных закономерностей, уже известных представлений о физических объектах и их характеристиках.
В квантовой механике он привел к выводу о том, что физические свойства объекта должны рассматриваться не как абсолютные, присущие объекту самому по себе, а лишь как относительные, определяемые взаимодействием объектов в целостной системе. Тем самым устраняются представления классической физики не только о существовании систем отсчета с абсолютными свойствами, но и о существовании физических объектов с абсолютными свойствами. В этом смысле квантовая теория продолжает и углубляет деятельность Эйнштейна в области преобразований классических представлений. Квантовая теория обогатила также характеристику состояния физического объекта, определяя его по набору его потенциальных возможностей.
Точно так же этот метод объективировал новую форму причинных связей — статистические закономерности. Последние вытекают здесь из существа самой теории, подтвержденной практикой, а не как временная замена точных динамических закономерностей, используемая нами в условиях слабомощности наших знаний.
Здесь для иллюстрации мощности этого метода приведены только некоторые примеры раскрытия нового в природе. Но такой метод построения теорий и вытекающие из него следствия никак не укладывались в систему представлений Эйнштейна о структуре мира, о путях его познания, о том, что единственной формой причинной связи в природе могут быть только однозначные связи, отражаемые в структурных или дифференциальных уравнениях. Идея континуума, на которую Эйнштейн опирался и в теории относительности, и в обобщенной теории тяготения, и в разработке единой теории поля, совместима только с одним, указанным выше, типом причинных связей. Все это и привело к тому, что Эйнштейн, исходивший из собственного метода построения теорий, не мог согласиться с основными идеями квантовой физики.
Эйнштейн, конечно, приводил свои доводы против принятия квантовых идей. На первый взгляд они даже кажутся убедительными. Но при более внимательном рассмотрении становится ясным, что они опираются на априорные представления о природе квантовых объектов и процессов, а именно это и не разрешает делать метод рассмотрения условий совместности экспериментальных фактов, приводящий к новой теории, к созданию образа новой объективной реальности. Возражая Бору, Борну, Паули, Гайтлеру и другим, Эйнштейн в Ответе на критику указывает на то, что волновая функция не дает полного описания распада отдельного индивидуального атома, так как не содержит в себе никаких указаний относительно момента времени распада радиоактивного атома (курсив Эйнштейна). А ведь каждый прежде всего склонен предположить,— продолжает он,— что индивидуальный атом распадается в определенный момент времени. В этой постановке проблемы явно обнаруживается априорный подход Эйнштейна: картина процесса обрисована прежде, чем создана теория, с позиции этой наглядной картины ведется критика новой теории. Здесь доводы и следствия поставлены с ног на голову.
Мы помним, что квантовая теория появилась в результате отыскания условий совместности экспериментальных фактов в данной области микроявлений, что она предсказала и новые факты, что она даже переходит в классическую (проверенную!) теорию при классических условиях, что, следовательно, она, а не что-либо иное, не какая-либо наглядная картина выступает как адекватный образ физической реальности.
И вот эта теория приводит к иной картине распада атома. Согласно теории (которая является обобщением опыта, многочисленные следствия которой подтверждаются опытом же!), время распада и энергия связаны так, что чем точнее определяется время, тем неопределеннее становится изменение энергии. Наши представления о механизме распада должны меняться, они должны соответствовать теории. Это требование не ново, оно аналогично тому, как Эйнштейн в свое время требовал, чтобы наши представления о структуре жидкости соответствовали проверенной теории броуновского движения. На этом основании мы должны были признать существование атомов и молекул, хотя непосредственно они не наблюдались.
Однако хотя Эйнштейн в свое время и пришел к выводу о необходимости трактовать теорию как целостность, механизм радиоактивного распада он рассматривал не в свете его квантовой теории, а на основе привычных представлений, которые для данного случая выступали уже как априорные.
В Ответе на критику он описывает небольшую дискуссию между критиком и защитником квантовой механики (физиком-теоретиком).
В уста последнего он вкладывает следующий довод в защиту квантовых идей: ?Утверждение о существовании определенного момента распада имеет смысл, если я могу в принципе определить этот момент экспериментально... Вся мнимая трудность получается потому, что нечто ненаблюдаемое выдается в качестве,.реального" (таков ответ физика-теоретика).
Вот этот предполагаемый ответ (несомненно, что такие ответы встречались) Эйнштейн и назвал (см. стр. 548) позитивистским, ведущим к принципу Беркли: существовать, значит быть наблюдаемым. Но здесь нет логики. Позитивизм утверждает: существуют только мои ощущения, наблюдения, восприятия; они ничего не отражают вне меня (ощущения могут быть похожи только на ощущения же, говорит Беркли). Другое дело утверждение: данному представлению в данной области ничего не соответствует (не соответствует же ничто в реальном мире представлению о чёрте!). Доводы Эйнштейна против Маха были убедительны: атомы были ненаблюдаемы непосредственно, но они были, и они наблюдались опосредованно, в частности через теорию броуновского движения, что и доказал Эйнштейн. Доводы Эйнштейна против квантовой механики неубедительны потому, что он хочет заставить верить в существование такого ненаблюдаемого, которое не находит отражения в теории-образе физической реальности, а напротив, исключается ею. Аналогично этому в свое время критиковали соотношение неопределенности координат и импульса квантового объекта: ?Нельзя одновременно точно определить координаты и импульс? Ну это только при современной технике; в будущем, когда техника усовершенствуется, координаты и импульсы можно будет измерить абсолютно точно. Нельзя же класть пределы нашему познанию!?.
Эта критика исходила из того, что координаты и импульс квантового объекта всегда существуют в определенно точном значении, вне связи друг с другом, невозможна только процедура одновременно точного измерения этих значений при современной технике.
Но такая критика обнаруживает непонимание того, что квантовая теория (эвристическое значение которой Эйнштейн всегда признавал!) в корне изменила наши представления о квантовом объекте и процессах, происходящих в квантовой области.
Мы помним, какой мощный импульс дал сам Эйнштейн развитию статистических методов физики. Тем не менее всю вторую половину жизни он категорически отрицал их объективный смысл. В письме Максу Борну от 3 декабря 1947 г. он писал: ?Мою физическую позицию я не могу для тебя обосновать так, чтобы ты признал ее сколько-нибудь разумной. Конечно, я понимаю, что принципиально статистическая точка зрения, необходимость которой в рамках существующего формализма впервые была ясно осознана ведь тобой, содержит значительную долю истины. Однако я не могу в эту теорию серьезно верить, потому что она несовместима с основным положением, что физика должна представлять действительность в пространстве и во времени без мистических дальнодействий... В чем я твердо убежден, так это в том, что в конце концов остановятся на теории, в которой закономерно связанными вещами будут не вероятности, а факты, как это и считалось недавно само собой разумеющимся. В обоснование этого убеждения я могу привести не логические доводы, а мой мизинец, как свидетеля, т. е. авторитет, который не внушает доверия за пределами моей кожи?. Всю жизнь Эйнштейна беспокоила двойственная, корпускулярноволновая природа квантовых объектов (так называемый?дуализм?).
Он, открывший фотонную структуру света, утверждал теперь, что все дискретные образования — элементарные частицы, атомы, фотоны и т. п.— суть сингулярности (?особые области?) поля, иначе говоря, они должны быть сведены к полю, в котором действуют дифференциальные уравнения, поскольку ничто, кроме них, по Эйнштейну, не является формой выражения причинной связи. Это прежде всего относится к статистической закономерности. Но современная квантовая электродинамика выявляет статистические закономерности и у поля. Дифференциальные уравнения (максвелловы) электромагнитного поля отражают лишь ту его сторону, которая рассматривается в макроскопической электродинамике, т. е. закономерности в процессах, в которых существенную роль играют изменения средних значений переменных. В микропроцессах приходится иметь дело с флуктуациями переменных поля около средних значений и с квантованием поля. Поэтому переход к полю не может освободить физику от статистических закономерностей. Некоторые авторы обсуждают вопрос: не вытекает ли отрицательная позиция Эйнштейна по отношению к квантовой теории из какого-либо прозрения будущих путей развития физики, путей, которых еще не видят его соратники, но которые уже раскрылись перед его умственным взором?
Нет, мы видим, что она вытекает из его методологии, из его понимания путей построения теории, из его априорной трактовки структуры внешнего мира, из того, что этому миру заранее предопределялся определенный тип связей.
Это отношение к квантовой теории появилось у него не в результате накопления нового экспериментального материала, ставящего под сомнение основы теории, не в итоге каких-либо собственных или даже чужих достижений. Оно появилось вскоре после построения им обобщенной теории тяготения, успех которой он принял за подтверждение?общего принципа относительности? и за обоснование тогда уже выработанной им рационалистической методологии.
Еще 8 марта 1920 г. Эйнштейн писал Максу Борну: ?В свободное время я всегда размышлял над квантовыми проблемами с точки зрения относительности. Я не думаю, что эта теория может обойтись без континуума. Однако мне до сих пор не удалось придать осязаемый образ моей любимой идее — понять квантовую теорию с помощью дифференциальных уравнений, применяя условия для особых решений?. А немного ранее, в том же году (27 января) он писал Борну: ?Меня также очень тревожит проблема причинности. Будут ли поглощение и излучение света квантами когда-либо поняты в смысле полной каузальности или же сохранится статистический остаток? Я должен признать, что у меня отсутствует мужество убеждения. Но я очень, очень неохотно отказываюсь от полной каузальности....
Мир, по Эйнштейну, представляется только в образе континуума, и теория должна выражать его посредством дифференциальных уравнений, которые являются единственной формой каузальной связи,— таков смысл этих писем. Уже в то время в них ярко отразилась вся методология Эйнштейна. В ней ничего не изменилось до конца его жизни. Теперь эта методология уже явно встала вразрез с основным развитием физики.

Заключение.

Теория познания Эйнштейна, выработанная им на основе своеобразной трактовки собственного успешного построения теории относительности и обобщенной теории тяготения, не оправдалась. Высоко оценив значение теории как целостности, поднявшись в этом отношении над гносеологией позитивизма, Эйнштейн не сумел полностью извлечь из этой идеи ее глубокий смысл и даже обеднил ее, так как не понял логической и генетической связи теории с опытом. Оказался неверным его основной тезис о том, что нет пути от опыта к построению теории. Этот тезис привел Эйнштейна не только к отрицанию основных идей квантовой физики, но и к созданию искусственной преграды к познанию связей нового типа в природе. Он привел к развитию рационалистической теории познания и к формулировке программы развития физики, которая оказалась нереализуемой.
Но сам Эйнштейн никогда не предавался унынию. Он твердо верил в спой путь и надежда не покидала его. Этой стойкости духа можно учиться у Эйнштейна.
Стойкость духа... Нельзя не преисполниться глубоким уважением к Эйнштейну как человеку. Высокая моральная чистота Эйнштейна; его глубочайшая преданность науке; его непритязательность в личной жизни; его искреннее презрение к славе, к внешнему благополучию, к деньгам; его душевное отношение к людям и постоянная готовность морально и материально помочь всем, в честности кого он убежден; его жгучая ненависть ко всякого рода бюрократизму; его свободолюбие и бесстрашие, с которым он бросал в лицо правителям обвинения в забвении интересов человечества; его настойчивая борьба против войны как средства решения спорных вопросов между народами и в особенности против атомной войны,— все это показывает в нем человека большой, благородной души. И все же при всех этих качествах он был крайне индивидуален и одинок. Его думы о настоящем и будущем человечества сочетались в нем с наивностью в делах общественно-политических; в философии он подвергался критике с разных сторон. И даже в своей стихии — в физике — он остался на склоне лет одиноким.
Подавляющее большинство физиков не пошло за Эйнштейном до конца. Жизнь заставила их искать другую линию развития физики. Но в их глазах Эйнштейн по-прежнему остается великим физиком нашего времени.
То, что он сделал для физики в ее критический переломный период, навсегда сохранит свое значение в ее развитии. Мы не назовем его беспринципным оппортунистом в философии. Такого наименования заслуживают те, кто идет на сделку с совестью. Эйнштейн был не таков. Он был убежден в правоте своего пути, но мы не можем не сказать: в теории познания он заблуждался. Вырабатывая ее, он опирался на слишком узкую базу своего профессионального опыта и слишком односторонне его толковал. Это оказало влияние и на понимание им путей дальнейшего развития физики. Упрек, в свое время адресованный им Маху, может быть возвращен и ему самому: философские предубеждения и ему помешали правильно определить пути познания и перспективы развития физики.

Список литературы отсутствует

Скачать: У вас нет доступа к скачиванию файлов с нашего сервера.

Ибо методологически неверно, не имея определения базового понятия “время”, пытаться создавать определение производного от него понятия “одновременность”.

В мысленном же эксперименте, доказывающем относительность одновременности, совершается еще одна, теперь уже концептуальная, ошибка - один из рассматриваемых в эксперименте объектов считается безотносительно покоящимся. Поочередный безотносительный покой рассматриваемых объектов, рождает эффект относительности одновременности.

В правильно же поставленном эксперименте, если рассматриваются только два объекта, а в обозримом пространстве нет ни мирового эфира, и нет никаких иных объектов, относительно которых можно было бы один из рассматриваемых объектов считать покоящимся, то в этом случае мы обязаны признать оба объекта либо равноправно движущимися, либо равноправно покоящимися относительно друг друга, что исключает возможность рождения эффекта относительности одновременности.

Не нужно иметь ни сильно богатое воображение , ни могучий интеллект, чтобы осознать, что в мысленный эксперимент Эйнштейна закралась досадная ошибка, которая является достаточным основанием для признания частной теории относительности Эйнштейна целиком и полностью не адекватной объективной реальности.

Отчего же теория, в основе которой заложена такая простенькая, очевидная и многими замеченная ошибка, вот уже сто лет живет и завоевывает умы далеко не глупых людей.

Причин тому несколько. Одна из них заключается в том, что до сих пор нет четких и однозначных определений таких понятий, как “время”, “пространство”, “движение”.

Более двух тысяч лет тому назад Зенон, пытаясь обратить внимание исследователей на серьезность этой проблемы, создал свои знаменитые апории, которые есть не что иное, как формально-логические противоречия, которые Зенон сформировал на основе не адекватных объективной реальности определений некоторых понятий.

“Ахиллес не способен догнать черепаху” потому, что пока Ахиллес преодолевает расстояние между точками их изначального пребывания, черепаха за это время тоже проползет какое-то расстояние, за время преодоления Ахиллесом которого, черепаха вновь окажется в иной точке. И так бесконечно.

Понятно, если Ахиллес будет стремиться в точку, где черепахи уже нет, или вообще никогда не было, то он ее никогда не догонит.

А если понятие “догнать” определить как точку их встречи, как оно в реальности и есть, и направить Ахиллеса в эту точку, то и проблем в описании этой погони не будет, как нет их и в реальности.

В апории “Дихотомия” доказывается, что никакой путь преодолеть вообще невозможно потому, что для того чтобы преодолеть какой-то путь, необходимо прежде преодолеть его половину, а чтобы преодолеть эту половину, нужно преодолеть половину этой половины. И так бесконечно. Поэтому даже начать движение невозможно.

Но если понятие “преодолеть путь” определить как процесс перемещения объекта из начальной точки в конечную, где объект преодолевает половину пути и какие угодно иные его части не “прежде, чем”, а в процессе преодоления пути в целом, то, опять же, проблемы описания процесса движения исчезают.

“Летящая стрела покоится” потому, что если взять такое малое мнгновение, за которое стрела не успела изменить своего пространственного положения, и, следовательно, покоилась, то сумма таких мгновений может родить только покой, но не движение.

Но если понятие “время” вообще и “мгновение” в частности определить не как Ньютон - абстрактная длительность, а как Аристотель - время есть число движения, т.е. время есть последовательность всех тех изменений, которые протекают в Мире, изменяя его. Если любое, даже самое малое, мгновение определяется произошедшими за это мгновение какими-то изменениями образующих Мир элементов, включая и изменение пространственного положения стрелы, то в этом случае получается, что если летящая стрела не изменила своего пространственного положения, то, стало быть, и не было никакого, даже самого малого, мгновения. Нет изменений - нет времени.

В апории “Стадий” Зенон ставит мысленный эксперимент, где время понимается не как последовательность изменений, а как абстрактная длительность, имеющая самую малую и далее неделимую величину - “атом” времени. Пространство понимается не как взаиморасположение образующих Мир элементов, а как вместилище для объектов Мира, также имеющее “атом” пространства.

В эксперименте два объекта движутся мимо третьего в противоположные стороны со скоростями относительно этого третьего объекта в один атом пространства за один атом времени. А это означает, что относительно друг друга они движутся со скоростью один атом пространства за половину неделимого атома времени. Вновь противоречие.

Создающий задачу, знает ее решение.

Зенон знал, что не существует атомов времени и пространства. Знал, что любое мгновение определяется бесконечным количеством изменений, произо шедших за это мгновение с образующими Мир элементами. Знал, что мертвый, абсолютно неподвижный, неизменный Мир есть Мир без времени, что время определяется последовательностью всех изменений, происходящих в Мире и потому понятие “время в собственной системе отсчета объекта” есть такая же нелепица, как и понятие “человечество в отдельно взятой деревне”.

По причине бесконечного количества образующих Мир элементов и их разнообразных соотношений, мы не имеем права предполагать, что Мир когда-либо может стать таким же, каким когда-то уже был. “Нельзя дважды войти в одну и ту же реку”. Так своеобразно Гераклит сформулировал закон необратимой и неповторяющейся последовательности развития Мира, который является абсолютным закон развития как Мира в целом, так и развития отдельных образующих Мир элементов. Поэтому геометрическим аналогом времени является бесконечная прямая, приходящая из бесконечного прошлого и уходящая в бесконечное будущее.

Геометрическим аналогом одновременности является бесконечная прямая, проходящая перпендикулярно прямой времени. Каждой точке прямой одновременности соответствует качественное, количественное и пространственное состояние каждого образующего Мир элемента на данное мгновение, геометрическим аналогом которого является точка пересечения прямой времени с прямой одновременности.

Пространство есть совокупность образующих его элементов (от элементарных частиц, до планет и звезд).

Пространство образовано элементами, а не наполнено ими.

Пространства самого по себе, без образующих его элементов, в объективной реальности не существует точно так же, как не существует погоды без образующих ее атмосферных явлений (ветер, снег, температура …), как не существует ширины и длины без измеряемого объекта.

Пустое пространство так же, как и пустое время с позиции диалектического материализма может иметь место только в виде абстрактного субъективного образа, не имеющего адекватного аналога в объективной реальность.

Проблема понимания теории Эйнштейна, - как, кстати, и апорий Зенона, - не физико-математическая, а чисто философская, и заключается она в адекватном объективной реальности отражении таких базовых мировоззренческих понятий, как “время”, “движение”, “пространство”. В рамках узкоспециальных физико-математических знаний эта проблема неразрешима.

Не адекватное объективной реальности отражение этих понятий рождает в описании этой реальности формально-логические противоречия. Зенон создавал их целенаправленно. В теории Эйнштейна они родились случайно в результате ухода от объективной реальности в мир субъективных абстракций в виде абстрактной четырехмерной системы отсчета пространство-время, которая позволяет совершать ошибки, подобные концептуальной ошибке Эйнштейна.

Объективная же реальность имеет пятимерную гравитационно-пространственно-временную систему отсчета, где пятой мерой является имеющая место быть в любой точке мирового пространства вектор гравитации, показывающий силу и направление гравитационного притяжения главного для данного пространства источника гравитации.

В пятимерной системе отсчета нет места произвольным субъективным представлениям о покое и движении объектов.

Пятимерная система отсчета, построенная на главном для нашей галактики векторе гравитации, который показывает направление гравитационного притяжения находящегося в центре галактики источника гравитации, не дает нам права наряду с правотой Коперника считать правым и Птолемея, как это следует из частной теории относительности Эйнштейна.

Ньютон считал, что объекты в космическом пространстве движутся относительно неподвижного мирового эфира. Но проведенный в конце 19-го века Максвеллом эксперимент по обнаружению эфирного ветра, который, по его мнению, должен проявляться при движении Земли вокруг Солнца, не дал положительного результата.

А в начале 20-го века Эйнштейн выдвинул идею, где пустое пространство, сочетаясь с пустым временем, рождало абстрактную четырехмерную систему отсчета пространство-время, в рамках которой довольно просто решалась в математической форме количественная сторона некоторых процессов, но которая в принципе не могла отражать физику рассматриваемых процессов.

Чтобы поймать льва в пустыне, нужно плоскость пустыни, поставив вертикально, спроецировать в прямую линию. А прямую линию, поставив вертикально, спроецировать в точку. И если в эту точку предварительно поставить клетку, лев окажется прямо в этой клетке.

Видимо, подобного рода простота решения проблем в рамках эйнштейновской абстракции вдохновила большинство физиков и математиков на пропаганду теории относительности Эйнштейна.

Вообще, большинство в науке формируется примерно так же, как и большинство в политике.

Когда политическая партия приходит к власти, большинство тут как тут: чего изволите, за кого голосуем.

Власть в науке это мнение ведущих ученых. И стоит только ведущим ученым сказать: в этом что-то есть, как тут же большинство начинает поддакивать: конечно, кто же этого не знает.

В 1921 - 1925 годах Миллер, предположив, что эфир, захватываясь Земной гравитацией, у самой поверхности Земли становится относительно этой поверхности неподвижным, провел опыты по схеме Майкельсона на высоте 6 тысяч футов.

Эфир был обнаружен.

Но было поздно. Большинство уже не хотело слышать об этих фактах. Большинство уже искало только факты, подтверждающие правильность теории относительности Эйнштейна. И находило их: луч света от звезды, проходя около Солнца, как и предсказывала теория Эйнштейна, искривлялся.

Большинство торжествовало, замалчивая тот факт, луч искривлялся вовсе не так, как должен был делать по теории. Угол искривления луча в период слабой активности Солнца был вдвое меньше предсказанного теорией, а в период высокой активности - вдвое больше. Траектория распространения луча также была гораздо сложнее предсказанной. Нужны были исследования физических причин этих явлений.

Но эйнштейновская абстракция это чисто математическая абстракция, где нет, и в принципе не может быть никакой физики.

Просто пустое пространство. Просто искривляется вблизи гравитирующего тела. Луч света искривляется просто потому, что пустое пространство кривое.

Искать здесь физику все равно, что искать возможность плоскость реальной пустыни спроецировать в реальную точку.

Современная физика в своем терминологическом инструментарии имеет не только абстрактное время, абстрактное пространство, но и абстрактную энергию.

Процесс аннигиляции электрона с позитроном современная физика описывает как исчезновение материи, как превращение материи в энергию в виде не имеющих массу покоя фотонов.

Поразительно! При феноменальнейшем объеме сделанных человечеством за последнее столетие открытий и изобретений - (от робких полетов над поверхностью Земли - до обыденности полетов на другие планеты; от примитивнейших радиоприемников - до лазеров, мобильников и компьютеров; от мичуринских скрещиваний - до генной инженерии и клонирования) - в то же самое время в вопросах осмысления понятий “время”, “пространство” и “энергия” мы остаемся на уровне Митрофанушки, который, как известно, понятие “дверь” считал не существительным, а прилагательным, потому, что дверь “прилагается” к косяку.

Пора, наконец, понять, что время, пространство и энергия “прилагаются” к материи в виде НЕОТЪЕМЛЕМЫХ ее свойств, и потому сами по себе, без своих материальных носителей, в объективной реальности не существуют.

Поэтому время не может замедляться, пространство не может искривляться, а энергия не может распространяться в виде нематериального фотона.

В попытке спасти частную теорию относительности, любители абстракций выдумали термин “время в собственной системе отсчета объекта”, утверждая, что здесь имеется в виду не абстрактное, пустое время, а конкретные протекающие в этой системе отсчета процессы, которые замедляются при движении системы.

Но это “изобретение” лишь обнажило заложенную в теории абсурдность, которая была менее очевидна, когда время было представлено в виде самостоятельной абстрактной сущности.

По теории, замедление времени может иметь место как в движущейся системе отсчета, так и вне ее, если наблюдатель считает ее покоящейся.

Так что, вопрос - кто же из братьев-близнецов в результате окажется старше, если результат зависит исключительно от субъективной точки зрения наблюдателя, оказался для частной теории относительности абсолютно тупиковым вопросом.

Кстати, для истинного физика, вопрос - где происходит замедление процессов, является гораздо менее интересным, чем вопрос - почему это происходит. Почему, к примеру, происходит замедление процесса распада мезонов.

Поразительно, но любителей абстракций этот вопрос, похоже, совсем не интересует.

Да это и понятно, ведь в рамках пустого пространства и этот вопрос превращается в абсолютно тупиковый.

Да и разве только он.

* Как формируются волновые свойства элементарных частиц?

* Что является средой распространения электромагнитных волн?

* Как осуществляется гравитационное взаимодействие тел?

* Как объясняется звездная аберрация?
* Почему траектория свободно падающего на поверхность Земли тела искривляется по направлению суточного вращения Земли?

* Как объяснить отрицательный результат опыта Майкельсона по обнаружению эфира, проводимого на поверхности Земли, и положительный результат опыта Морли, проводимого на высоте 6000 футов над поверхностью Земли?

* Почему величина угла искривления луча света, проходящего от звезды мимо Солнца, зависит от активности Солнца?

* Исчезновение материи с позиции диалектического материализма есть явление в принципе невозможное. Как в этом случае описать процесс аннигиляции электрона с позитроном?

* Что оказывает сопротивление движению элементарных частиц в вакуумном пространстве ускорителей?

Ни на один из поставленных вопросов современная (официальная) физика не способна дать вразумительного ответа.

И главной причиной такого печального положения дел является то стратегическое направление развитие фундаментальной физики, которое было определено Эйнштейном и поддержано большинством научного сообщества.

И этому большинству теория Эйнштейна нравится.

Нравится своей экстравагантностью (замедление хода времени, собственное время объекта)

Нравится своими парадоксами (парадокс близнецов, парадокс волна-частица). Нравится даже тем, что бросает вызов здравому смыслу.

Нравится потому, что это большинство имеет возможность ощутить себя членами интеллектуального элитного клуба: только им - умным - дано видеть “новое платье короля”.

Простым смертным, разумеется, не дано понять, как же может искривляться и замедляться то, чего не существует в объективной реальности как самостоятельной сущности.

Не дано понять того, что если увеличение продолжительности жизни мезонов можно объяснять замедлением хода времени в собственной системе отсчета мезонов, отчего же катастрофическое уменьшение средней продолжительности жизни россиян в наши дни нельзя объяснить ускорением хода времени в российской собственной системе отсчета.

Но никакие, даже убийственно точные и логичные, аргументы не способны переубедить большинство. Потому, что никто и никогда из клуба высоких интеллектуалов добровольно не переходил в клуб с противоположным названием.

Поэтому надежда только на молодежь, обращаясь к которой в духе Козьмы Пруткова, хочется сказать: зри в корень, то бишь в определение понятий, и ты отчетливо увидишь “наготу короля”.

В заключение хотелось бы еще сказать, что наука развивается не большинством. Наука развивается одиночками, которые нацелены не на поддакивание начальству, не на собственное благополучие, не на чины.

Они нацелены на истину.

И в фундаментальной физике они есть.

И разрабатывая свои гипотезы, объясняя многое из того, что не способна объяснить официальная физика, сетуя на то, что не могут объяснить всех загадок микромира, они понимают главное: какие бы сложности ни ожидали фундаментальную физику на пути признания факта существования эфира образованного неизвестными нам пока материальными частицами, этот факт, тем не менее, мы обязаны признать, потому, что другого пути развития физики в рамках диалектического материализма просто нет, и в принципе быть не может.

Иные «мудрецы», пытаясь решить проблему Эйнштейна-Зенона, утверждают, что определение понятий – вовсе не главная задача, главным является раскрытие сущности явления.

Это мнение рождается непониманием термина «определение понятий», который как раз и предполагает не только раскрытие сущности явления, но и создание логико-терминологического аппарата, посредством которого описывается эта сущность. Без создания логико-терминологического аппарата раскрытая исследователем сущность явления останется достоянием только данного исследователя, и не сможет превратиться в общеизвестный факт общественного сознания.

Литература

1. Брусин Л.Д., Брусин С.Д. Иллюзия Эйнштейна и реальность Ньютона. Москва, 1993г.

2. Горбацевич Ф.Ф.
3. Краснояров В. Изобретатель и рационализатор, № 7, 1990г.

Специальная теория относительности была первой физической теорией, которая радикально изменила взгляды ученых на пространство, время и движение. Если раньше пространство и время рассматривались обособленно от движения материальных тел, а само движение независимо от систем отсчета, т.е. как абсолютное, то с возникновением специальной теории относительности было твердо установлено:

    всякое движение может описываться только по отношению к другим телам, которые могут приниматься за системы отсчета, связанные с определенной системой координат;

    пространство и время тесно взаимосвязаны друг с другом, ибо только совместно они определяют положение движущегося тела. Именно поэтому время в теории относительности выступает как четвертая координата для описания движения, хотя и отличная от пространственных координат;

    одинаковость формы законов механики для всех инерциальных систем отсчета сохраняет свою силу и для законов электродинамики, но только для этого вместо преобразований Галилея используются преобразования Лоренца;

    при обобщении принципа относительности и распространении его на электромагнитные процессы, постулируется постоянство скорости света, которое никак не учитывается в механике.

Общая теория относительности отказывается от такого ограничения, также как и от требования рассматривать лишь инерциальные системы отсчета, как это делает специальная теория. Благодаря такому глубокому обобщению она приходит к выводу:все системы отсчета являются равноценными для описания законов природы .

С философской точки зрения наиболее значительным результатом общей теории относительности является установление зависимости пространственно-временных свойств окружающего мира от расположения и движения тяготеющих масс.

Именно благодаря воздействию тел с большими массами происходит искривление путей движения световых лучей. Следовательно, гравитационное поле, создаваемое такими телами, определяет в конечном итоге пространственно-временные свойства мира. В специальной теории относительности абстрагируются от действия гравитационных полей и поэтому ее выводы оказываются применимыми лишь для небольших участков пространства-времени. Концепцию относительности, лежащую в основе общей и специальной физической теории, не следует смешивать с принципом относительности наших знаний, в том числе и в физике. Если первая из них касается движения физических тел по отношению к разным системам отсчета, т.е. характеризует процессы, происходящие в объективном, материальном мире, то вторая относится к росту и развитию нашего знания, т.е. касается мира субъективного, процессов изменения наших представлений об объективном мире.

Преемственная связь между общей и специальной теорий относительности выражается принципом соответствия – методологическим принципом, устанавливающим связь между старыми и новыми теориями.

      1. Симметрия пространства и времени и законы сохранения

Связь между симметрией пространства и законами сохранения установила немецкий математик Эмми Нетер (1882–1935). Она сформулировала и доказала фундаментальную теорему математической физики, названную ее именем, из которой следует, что из однородности пространства и времени вытекают законы сохранения соответственно импульса и энергии, а из изотропности пространства – закон сохранения момента импульса.

Эта теорема выражает принцип инвариантности относительно сдвигов в пространстве и во времени , т.е. параллельных переносов начала координат, и начала отсчета времени:смещение во времени и в пространстве не влияет на протекание физических процессов. Указанный принцип является следствиемоднородности пространства и времени:

    однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета.

    однородность времени означает инвариантность физических законов относительно выбора начала отсчета времени. Например, при свободном падении тела в поле силы тяжести его скорость и пройденный путь зависят лишь от начальной скорости и продолжительности свободного падения тела и не зависят от того, когда тело начало падать.

С однородностью пространства связан закон сохранения импульса: импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени . Закон сохранения импульса справедлив не только в классической физике, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц, подчиняющихся законам квантовой механики. Импульс сохраняется и для незамкнутой системы, если геометрическая сумма всех внешних сила равна нулю. Закон сохранения импульса носит универсальный характер и является фундаментальным законом природы.

С однородностью времени связан закон сохранения механической энергии : в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т.е. не изменяется со временем. Консервативные силы действуют только в потенциальных полях, характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; например, сила трения.

Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами. Закон сохранения механической энергии можно сформулировать еще и так: в консервативных системах полная механическая энергия сохраняется . В консервативных системах могут происходить лишь превращения кинетической энергии в потенциальную энергию и обратно в эквивалентных количествах.

В диссипативных системах механическая энергия постепенно уменьшается из-за преобразования ее в другие (немеханические) формы энергии. Этот процесс называется диссипацией, или рассеянием энергии.

В системе, в которой действуют консервативные и диссипативные силы, например силы трения, полная механическая энергия системы не сохраняется. Следовательно, для такой системы закон сохранения механической энергии не выполняется. Однако при убывании механической энергии всегда возникает эквивалентное количество энергии другого вида. Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом заключается физическая сущность закона сохранения и превращения энергии, сущность неуничтожения материи и ее движения, поскольку энергия – универсальная мера различных форм движения и взаимодействия.

Закон сохранения энергии – результат обобщения многих экспериментальных данных. Как мы уже говорили, идея этого закона принадлежит М.В. Ломоносову, изложившему закон сохранения материи и движения, а количественная его формулировка дана немецкими учеными Ю. Майером и Г. Гельмгольцем.

Обратимся еще к одному свойству симметрии пространства – его изотропности . Изотропность пространства означает инвариантность физических законов относительно выбора направлений осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).

Из изотропности пространства следует фундаментальный закон природы – закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Выявление различных симметрий в природе, а иногда и постулирование их стало одним из методов теоретического исследования свойств микро- , макро- и мегамира. Возросла в связи с этим роль весьма сложного и абстрактного математического аппарата – теории групп – наиболее адекватного и точного языка для описания симметрии.

Теория относительности была первой физической теорией, которая радикально изменила взгляды ученых на пространство, время и движение. Раньше пространство и время рассматривались обособленно от движения материальных тел, а движение независимо от систем отсчета, то с возникновением специальной теории относительности было установлено:

− всякое движение может описываться только по отношению к другим телам, которые могут приниматься за системы отсчета, связанные с определенной системой координат;

− пространство и время тесно взаимосвязаны друг с другом, ибо только совместно они определяют положение движущегося тела. Время в теории относительности выступает как четвертая координата для описания движения, хотя и отличная от пространственных координат;

− одинаковость формы законов механики для всех инерциальных, или галилеевых, систем отсчета сохраняет свою силу и для законов электродинамики, но только для этого вместо преобразований Галилея используются преобразования Лоренца.

− при обобщении принципа относительности и распространении его на электромагнитные процессы постулируется постоянство скорости света, которое никак не учитывается в механике.

Общая теория относительности отказывается от такого ограничения, так же как и от требования рассматривать лишь инерциальные системы отсчета, как это делает специальная теория. Благодаря такому обобщению она приходит к выводу: все системы отсчета являются равноценными для описания законов природы. С философской точки зрения наиболее значительным результатом общей теории является установление зависимости пространственно-временных свойств окружающего мира от расположения и движения тяготеющих масс.

Именно благодаря воздействию тел с большими массами происходит искривление путей движения световых лучей. Следовательно, гравитационное поле, создаваемое такими телами, определяет в конечном итоге пространственно-временные свойства мира. В специальной теории относительности абстрагируются от действия гравитационных полей и поэтому ее выводы оказываются применимыми лишь для небольших участков пространства-времени.

Концепцию относительности, лежащую в основе общей и специальной физической теории, не следует смешивать с принципом относительности наших знаний. Если первая из них касается движения физических тел по отношению к разным системам отсчета, то вторая относится к росту и развитию нашего знания, процессов изменения наших представлений об объективном мире. Об этом сказал американский физик Ричард Фейнман (р. 1918). Отвечая на вопрос, какие новые идеи и предложения внушил физикам принцип относительности, Фейнман указывает, что первое открытие по существу состояло в том, что даже те идеи, которые уже очень долго держатся и очень точно проверены, могут быть ошибочными. Если возникают некие "странные" идеи, вроде того, что когда идешь, то время тянется медленнее, то неуместен вопрос, нравится ли это нам? Уместен здесь другой вопрос: согласуются ли эти идеи с тем, что показал опыт? И наконец, теория относительности подсказала, что надо обращать внимание на симметрию законов или (что более определенно) искать способы, с помощью которых законы можно преобразовать, сохраняя при этом их форму.

Вопросы контроля знаний и к семинару 5.

1. Как рассматривались понятия времени и пространства в классической механике?

2. Приведите формулировку принципа относительности для законов механики.

3. Что нового вносит специальная теория относительности в прежний принцип относительности классической механики?

4. Почему специальная теория относительности постулирует постоянство, скорости света? 5. Как изменяется характер времени в движущейся и покоящейся инерциальных системах отсчета? Объясните, исходя из этого, парадокс близнецов. Чем отличается поле тяготения от других физических полей?

6. Почему инертная масса равна тяжелой массе? В чем заключается единство и различие между специальной и общей теориями относительности?

7. Как была проверена правильность общей теории относительности?

8. Почему луч света искривляется вблизи тяготеющих масс?

9. Объясните, что представляет собой кривизна пространства.

10. К каким новым философским выводам приводит теория относительности?

Литература

1. Эйнштейн А. О специальной и общей теории относительности (общедоступное изложение). //Собр. науч. трудов в 4-х т. T.I − М.: Наука, 1965. − С.530-601.

2. Фейнмановские лекции по физике. Вып. 1-2. − М.: Мир, 1976. − С.264-271, 283-290.

3. Философские проблемы естествознания. − М.: Высшая школа, 1985. − С.208-233.

4. Эйнштейн А., Инфельд Л. Эволюция физики//Собр. науч. тр. Т. 4.

5. Гинзбург В. Л. О физике и астрофизике. − М.,1980.

«Концепция неопределенности квантовой механики»

Введение

Понятия и принципы классической физики оказались неприменимыми не только к изучению свойств пространства и времени, но еще и исследованию физических свойств мельчайших частиц материи или микрообъектов (электроны, протоны, нейтроны, атомы и т.д.). Они образуют невидимый нами микромир, и поэтому свойства объектов этого мира совершенно не похожи на свойства объектов привычного нам макромира. Планеты, звезды, кометы, квазары и другие небесные тела образуют мегамир.

Переходя к изучению свойств и закономерностей объектов микромира, необходимо сразу же отказаться от привычных представлений, которые навязаны нам предметами и явлениями окружающего нас макромира.