С чем реагируют гидроксиды. Химические свойства гидроксидов. Типы хим. связей

С чем реагируют гидроксиды. Химические свойства гидроксидов. Типы хим. связей

Основные классы неорганических соединений

*(Уважаемые студенты! Для изучения данной темы и выполнения тестовых заданий в качестве наглядного материала необходимо иметь таблицу Периодической системы элементов, таблицу растворимости соединений и ряд напряжений металлов.

Все вещества делятся на простые, состоящие из атомов одного элемента, и сложные, состоящие из атомов двух и более элементов. Сложные вещества принято делить на органические, к которым относятся почти все соединения углерода (кроме простейших, как, например: CO, CO 2 , H 2 CO 3 , HCN) и неорганические. К наиболее важным классам неорганических соединений относятся:

а) оксиды - бинарные соединения элемента с кислородом;

б) гидроксиды, которые подразделяются на оснóвные (основания), кислотные (кислоты) и амфотерные;

Прежде, чем приступить к характеристике классов неорганических соединений, необходимо рассмотреть понятия валентности и степени окисления.

Валентность и степень окисления

Валентность характеризует способность атома образовывать химические связи. Количественно валентность - это число связей, которые образует атом данного элемента в молекуле. В соответствии с современными представлениями о строении атомов и химической связи атомы элементов способны отдавать, присоединять электроны и образовывать общие электронные пары. Полагая, что каждая химическая связь образована парой электронов, валентность можно определить как число электронных пар, которыми атом связан с другими атомами. Валентность не имеет знака.

Степень окисления (СО ) - это условный заряд атома в молекуле, вычисленный из предположения, что молекула состоит из ионов.

Ионы - это положительно и отрицательно заряженные частицы вещества. Положительно заряженные ионы называются катионами , отрицательно - анионами . Ионы могут быть простыми, например Cl - (состоять из одного атома) или сложными, например SO 4 2- (состоять из нескольких атомов).

Если молекулы веществ состоят из ионов, то условно можно предположить, что между атомами в молекуле осуществляется чисто электростатическая связь. Это значит, что независимо от природы химической связи в молекуле, атомы более электроотрицательного элемента притягивают к себе электроны менее электроотрицательного атома.



Степень окисления обычно обозначается римскими цифрами со знаком “+” или “-” перед цифрой (например, +III), а заряд иона обозначается арабской цифрой со знаком “+” или “-” позади цифры (например, 2-).

Правила определения степени окисления элемента в соединении:

1. СО атома в простом веществе равна нулю, например, О 2 0 , С 0 , Na 0 .

2. СО фтора всегда равна -I, т.к. это самый электроотрицательный элемент.

3. СО водорода равна +I в соединениях с неметаллами (Н 2 S, NH 3) и -I в соединениях с активными металлами (LiH, CaH 2).

4. СО кислорода во всех соединениях равна -II (кроме пероксида водорода Н 2 О 2 и его производных, где степень окисления кислорода равна -I, и ОF 2 , где кислород проявляет СО +II).

5. Атомы металлов всегда имеют положительную степень окисления, равную их номеру группы в Периодической таблице, или меньшую, чем номер группы. Для первых трех групп СО металлов совпадает с номером группы, исключение составляют медь и золото, для которых более устойчивыми степенями окисления являются +II и +III соответственно.

6. Высшая (максимальная) положительная СО элемента равна номеру группы, в которой он расположен (например, Р находится в V группе А подгруппе и имеет СО +V). Это правило применимо к элементам как главных, так и побочных подгрупп. Исключение - для элементов I B и VIII А и В подгрупп, а также для фтора и кислорода.

7. Отрицательная (минимальная) СО характерна только для элементов главных подгрупп IV A - VII A, причем она равна номеру группы минус 8.

8. Сумма СО всех атомов в молекуле равна нулю, а в сложном ионе равна заряду этого иона.

Пример: Рассчитайте степень окисления хрома в соединении K 2 Cr 2 O 7 .

Решение: Обозначим СО хрома за х . Зная СО кислорода, равную -II, и СО калия +I (по номеру группы, в которой находится калий) составим уравнение:

K 2 +I Cr 2 х O 7 -II

1·2 + х ·2 + (-2)·7 = 0

Решив уравнение, получим х = 6. Следовательно, СО атома хрома равна +VI.

Оксиды

Оксиды - это соединения элементов с кислородом. Степень окисления кислорода в оксидах -II.

Составление формул оксидов

Формула любого оксида будет иметь вид Э 2 О х, где х - степень окисления элемента, образующего оксид (четные индексы следует сократить на два, например, пишут не S 2 O 6 , а SO 3). Для составления формулы оксида необходимо знать, в какой группе Периодической системы находится элемент. Максимальная СО элемента равна номеру группы. В соответствии с этим формула высшего оксида любого элемента в зависимости от номера группы будет иметь вид:

Задание : Составьте формулы высших оксидов марганца и фосфора.

Решение : Марганец расположен в VII B подгруппе Периодической системы, значит его высшая СО равна +VII. Формула высшего оксида будет иметь вид Mn 2 O 7 .

Фосфор расположен в V A подгруппе, отсюда формула его высшего оксида имеет вид Р 2 О 5 .

Если элемент находится не в высшей степени окисления, необходимо знать эту степень окисления. Например, сера, находясь в VI A подгруппе, может иметь оксид, в котором она проявляет СО равную +IV. Формула оксида серы (+IV) будет иметь вид SO 2 .

Номенклатура оксидов

В соответствии с Международной номенклатурой (IUPAC) название оксидов образуется из слова “оксид” и названия элемента в родительном падеже.

Например: СаО - оксид (чего?) кальция

Н 2 О - оксид водорода

SiO 2 - оксид кремния

CО элемента, образующего оксид, можно не указывать, если он проявляет только одну СО, например:

Al 2 O 3 - оксид алюминия;

MgO - оксид магния

Если элемент имеет несколько степеней окисления, необходимо их указывать:

СuO - оксид меди (II), Сu 2 O - оксид меди (I)

N 2 O 3 - оксид азота (III), NO - оксид азота (II)

Сохранились и часто употребляются старые названия оксидов с указанием числа атомов кислорода в оксиде. При этом используются греческие числительные- моно-, ди-, три-, тетра-, пента-, гекса- и т.д.

Например:

SO 2 - диоксид серы, SO 3 - триоксид серы

NO - монооксид азота

В технической литературе, а также в промышленности широко употребляются тривиальные или технические названия оксидов, например:

CaO - негашеная известь, Al 2 O 3 - глинозем

СО 2 - углекислый газ, СО - угарный газ

SiO 2 - кремнезем, SO 2 - сернистый газ

Методы получения оксидов

а) Непосредственное взаимодействие элемента с кислородом в надлежащих условиях:

Al + O 2 → Al 2 O 3 ;(~ 700 °С)

Cu + O 2 → CuO(< 200 °С)

S + O 2 → SO 2

Данным способом нельзя получить оксиды инертных газов, галогенов, “благородных” металлов.

б) Термическое разложение оснований (кроме оснований щелочных и щелочноземельных металлов):

Cu(OH) 2 → CuO + H 2 O(> 200 °С)

Fe(OH) 3 → Fe 2 O 3 + H 2 O(~ 500-700 °С)

в) Термическое разложение некоторых кислот:

H 2 SiO 3 → SiO 2 + H 2 O(1000°)

H 2 CO 3 → CO 2 + H 2 O(кипячение)

г) Термическое разложение солей:

СаСО 3 → СаО + СО 2 (900° C)

FeCO 3 → FeO + CO 2 (490°)

Классификация оксидов

По химическим свойствам оксиды делятся на солеобразующие и несолеобразующие.

Несолеобразующие (безразличные) оксиды не образуют ни кислот, ни оснований (не взаимодействуют ни с кислотами, ни с основаниями, ни с водой). К ним относятся: оксид углерода (II) - CO, оксид азота (I) - N 2 O, оксид азота (II) - NO и некоторые другие.

Солеобразующие оксиды подразделяются на оснóвные, кислотные и амфотерные.

Оснóвными называют те оксиды, которым соответствуют гидроксиды, называемые основаниями. Это оксиды большинства металлов в низшей степени окисления (Li 2 O, Na 2 O, MgO, CaO, Ag 2 O, Cu 2 O, CdO, FeO, NiO, V 2 O 3 и др.).

Присоединяя (прямо или косвенно) воду, основные оксиды образуют основные гидроксиды (основания). Например, оксиду меди (II) - СuO соответствует гидроксид меди (II) - Cu(OH) 2 , оксиду BaO - гидроксид бария - Ba(OH) 2 .

Важно помнить, что СО элемента в оксиде и соответствующем ему гидроксиде одинакова!

Оснoвные оксиды взаимодействуют с кислотами или кислотными оксидами, образуя соли.

Кислотными называют те оксиды, которым соответствуют кислотные гидроксиды, называемые кислотами . Кислотные оксиды образуют неметаллы и некоторые металлы в высших степенях окисления (N 2 O 5 , SO 3 , SiO 2 , CrO 3 , Mn 2 O 7 и др.).

Присоединяя воду (прямо или косвенно), кислотные оксиды образуют кислоты. Например, оксиду азота (III) - N 2 O 3 соответствует азотистая кислота HNO 2 , оксиду хрома (VI) - CrO 3 - хромовая кислота H 2 CrO 4 .

Кислотные оксиды взаимодействуют с основаниями или основными оксидами, образуя соли.

Кислотные оксиды можно рассматривать как продукты “отнятия” воды от кислот и называть их ангидридами (т.е. безводными). Например, SO 3 - ангидрид серной кислоты H 2 SO 4 (или просто серный ангидрид), P 2 O 5 - ангидрид ортофосфорной кислоты H 3 PO 4 (или просто фосфорный ангидрид).

Важно помнить, что СО элемента в оксиде и соответствующей ему кислоте, а также в анионе этой кислоты одинакова!

Амфотерными называются те оксиды, которым могут соответствовать и кислоты, и основания. К ним относятся BeO, ZnO, Al 2 O 3 , SnO, SnO 2 , Cr 2 O 3 и оксиды некоторых других металлов, находящихся в промежуточных степенях окисления. Кислотные и оснóвные свойства у этих оксидов выражены в различной степени. Например, у оксидов алюминия и цинка кислотные и основные свойства выражены примерно одинаково, у Fe 2 O 3 преобладают основные свойства, у PbO 2 преобладают кислотные свойства.

Амфотерные оксиды образуют соли при взаимодействии как с кислотами, так и с основаниями.

Химические свойства оксидов

Химические свойства оксидов (и соответствующих им гидроксидов) подчиняются принципу кислотно-основного взаимодействия, согласно которому соединения, проявляющие кислотные свойства, реагируют с соединениями, обладающими основными свойствами.

Основные оксиды взаимодействуют:

а) с кислотами:

CuO + H 2 SO 4 → H 2 O + CuSO 4 ;

BaO + H 3 PO 4 → H 2 O + Ba 3 (PO 4) 2 ;

б) с кислотными оксидами:

CuO + SO 2 → CuSO 3 ;

BaO + N 2 O 5 → Ba(NO 3) 2 ;

в) оксиды щелочных и щелочноземельных металлов могут растворяться в воде:

Na 2 O + H 2 O → NaOH;

BaO + H 2 O → Ba(OH) 2 .

Кислотные оксиды взаимодействуют:

а) с основаниями:

N 2 O 3 + NaOH → H 2 O + NaNO 2 ;

CO 2 + Fe(OH) 2 → H 2 O + FeCO 3 ;

б) с основными оксидами:

SO 2 + CaO → CaSO 3 ;

SiO 2 + Na 2 O → Na 2 SiO 3 ;

в) могут (но не все) растворяться в воде:

SO 3 + H 2 O → H 2 SO 4 ;

P 2 O 3 + H 2 O → H 3 PO 3 .

Амфотерные оксиды могут взаимодействовать:

а) c кислотами:

ZnO + H 2 SO 4 → H 2 O + ZnSO 4 ;

Al 2 O 3 + H 2 SO 4 → H 2 O + Al 2 (SO 4) 3 ;

б) с кислотными оксидами:

ZnO + SO 3 → ZnSO 4 ;

Al 2 O 3 + SO 3 → Al 2 (SO 4) 3 ;

в) с основаниями:

ZnO + NaOH + H 2 O → Na 2 ;

Al 2 O 3 + NaOH + H 2 O → Na 3 ;

г) c основными оксидами:

ZnO + Na 2 O → Na 2 ZnO 2 ;

Al 2 O 3 + Na 2 O → NaAlO 2 .

В первых двух случаях амфотерные оксиды проявляют свойства оснóвных оксидов, в двух последних случаях - свойства кислотных оксидов.

Гидроксиды

Гидроксиды представляют собой гидраты оксидов с общей формулой m Э 2 О х ·n H 2 O (n и m - небольшие целые числа, х - валентность элемента). Гидроксиды отличаются от оксидов по составу только наличием воды в их молекуле. По своим химическим свойствам гидроксиды делятся на основные (основания), кислотные (кислоты) и амфотерные .

Основания (основные гидроксиды)

Основанием называется соединение элемента с одной, двумя, тремя и реже четырьмя гидроксильными группами с общей формулой Э(ОН) х . В качестве элемента всегда выступают металлы главных или побочных подгрупп.

Растворимые основания - это электролиты, которые в водном растворе диссоциируют (распадаются на ионы) с образованием анионов гидроксильной группы ОН ‾ и катиона металла. Например:

KOH = K + + OH ‾ ;

Ba(OH) 2 = Ba 2+ + 2OH ‾

За счёт наличия в водном растворе гидроксильных ионов ОН ‾ основания проявляют щелочную реакцию среды.

Составление формулы основания

Чтобы составить формулу основания, необходимо написать символ металла и, зная его степень окисления, приписать рядом соответствующее число гидроксильных групп. Например: иону Mg +II соответствует основание Mg(OH) 2 , иону Fe +III соответствует основание Fe(OH) 3 и т.д. Для первых трех групп главных подгрупп Периодической системы степень окисления металлов равна номеру группы, поэтому формула основания будет ЭОН (для металлов I A подгруппы), Э(OH) 2 (для металлов II A подгруппы), Э(ОН) 3 (для металлов III A подгруппы). Для других групп (в основном побочных подгрупп) необходимо знать степень окисления элемента, т.к. она может не совпадать с номером группы.

Номенклатура оснований

Названия оснований образуются из слова “гидроксид” и названия элемента в родительном падеже, после которого римскими цифрами в скобках указывается степень окисления элемента, если это необходимо. Например: KOH - гидроксид калия, Fe(OH) 2 - гидроксид железа (II), Fe(OH) 3 - гидроксид железа (III) и т.д.

Существуют технические названия некоторых оснований: NaOH - едкий натр, КОН - едкое кали, Са(ОН) 2 - гашеная известь.

Методы получения оснований

а) Растворение в воде оснoвных оксидов (в воде растворимы только оксиды щелочных и щелочноземельных металлов):

Na 2 O + H 2 O → NaOH;

CaO + H 2 O → Ca(OH) 2 ;

б) Взаимодействие щелочных и щелочноземельных металлов с водой:

Na + H 2 O → H 2 + NaOH;

Ca + H 2 O → H 2 + Ca(OH) 2 ;

в) Вытеснение сильным основанием слабого из соли:

NaOH + CuSO 4 → Cu(OH) 2 ↓ + Na 2 SO 4 ;

Ba(OH) 2 + FeCl 3 → Fe(OH) 3 ↓ + BaCl 2 .

Классификация оснований

а) По количеству гидроксильных групп основания делятся на одно- и многокислотные: ЭОН, Э(ОН) 2 , Э(ОН) 3 , Э(ОН) 4 . Индекс х в формуле основания Э(ОН) х носит название “кислотность” основания.

б) Основания могут быть растворимыми и нерастворимыми в воде. Большинство оснований нерастворимы в воде. Хорошо растворимые в воде основания образуют элементы I A подгруппы - Li, Na, K, Rb, Cs, Fr (щелочные металлы). Они называются щелочами . Кроме того, растворимым основанием является гидрат аммиака NH 3 ·H 2 O, или гидроксид аммония NH 4 OH, но он не относится к щелочам. Меньшей растворимостью обладают гидроксиды Ca, Sr, Ba (щелочноземельных металлов), причем растворимость их увеличивается по группе сверху вниз: Ba(OH) 2 - наиболее растворимое основание.

в) По способности диссоциировать в растворе на ионы основания делятся на сильные и слабые . Сильными основаниями являются гидроксиды щелочных и щелочноземельных металлов - они диссоциируют на ионы полностью. Остальные основания являются основаниями средней силы или слабыми. Гидрат аммиака также является слабым основанием.

Химические свойства оснований

Основания взаимодействуют с соединениями, проявляющими кислотные свойства:

а) Взаимодействуют с кислотами с образованием соли и воды. Эта реакция называется реакцией нейтрализации:

Ca(OH) 2 + H 2 SO 4 → CaSO 4 + H 2 O;

б) Взаимодействуют с кислотными или амфотерными оксидами (эти реакции также можно отнести к реакциям нейтрализации или кислотно-основного взаимодействия):

Cu(OH) 2 + SO 2 → H 2 O + CuSO 4 ;

NaOH + ZnO → Na 2 ZnO 2 + H 2 O;

в) Взаимодействуют с кислыми солями (кислые соли содержат атом водорода в анионе кислоты);

Ca(OH) 2 + Ca(HCO 3) 2 → CaCO 3 + H 2 O;

NaOH + Ca(HSO 4) 2 → CaSO 4 + Na 2 SO 4 + H 2 O;

г) Сильные основания могут вытеснять слабые из солей:

NaOH + MnCl 2 → Mn(OH) 2 ↓ + NaCl;

Ba(OH) 2 + Mg(NO 3) 2 → Mg(OH) 2 ↓ + Ba(NO 3) 2 ;

д) нерастворимые в воде основания при нагревании разлагаются на оксид и воду.

Калия, натрия или лития, могут взаимодействовать с водой. В этом случае в продуктах реакции обнаруживаются соединения, относящиеся к гидроксидам. Свойства этих веществ, особенности протекания химических процессов, в которых участвуют основания, обусловлены присутствием в их молекулах гидроксильной группы. Так, в реакциях электролитической диссоциации основания расщепляются на ионы металла и анионы OH - . Как основания взаимодействуют с оксидами неметаллов, кислотами и солями, мы и рассмотрим в нашей статье.

Номенклатура и строение молекулы

Чтобы правильно назвать основание, требуется к названию металлического элемента прибавить слово гидроксид. Приведем конкретные примеры. Основание алюминия относится к амфотерным гидроксидам, свойства которых мы рассмотрим в статье. Обязательное присутствие в молекулах оснований гидроксильной группы, связанной с катионом металла ионным типом связи, можно определить с помощью индикаторов, например, фенолфталеина. В водной среде избыток ионов OH - определяется по изменению цвета раствора индикатора: бесцветный фенолфталеин становится малиновым. Если металл проявляет несколько валентностей, он может образовывать несколько оснований. Например, железо имеет два основания, в которых равна 2 или 3. Первое соединение характеризуется признаками второе - амфотерных. Поэтому свойства высших гидроксидов отличаются от соединений, в которых металл имеет низшую степень валентности.

Физическая характеристика

Основания - это твердые вещества, устойчивые к нагреванию. По отношению к воде они делятся на растворимые (щелочи) и нерастворимые. Первая группа образована активными в химическом отношении металлами - элементами первой и второй групп. Нерастворимые в воде вещества состоят из атомов других металлов, чья активность уступает натрию, калию или кальцию. Примерами таких соединений могут служить основания железа или меди. Свойства гидроксидов будут зависеть от того, к какой группе веществ они относятся. Так, щелочи являются термически прочными и не разлагаются при нагревании, тогда, как нерастворимые в воде основания под действием высокой температуры разрушаются, образуя оксид и воду. Например, основание меди разлагается следующим образом:

Cu(OH) 2 = CuO + H 2 O

Химические свойства гидроксидов

Взаимодействие между собой двух важнейших групп соединений - кислот и оснований - именуют в химии реакцией нейтрализации. Такое название можно объяснить тем, что химически агрессивные гидроксиды и кислоты образуют нейтральные продукты - соли и воду. Являясь, по сути, обменным процессом между двумя сложными веществами, нейтрализация характерна как для щелочей, так и для нерастворимых в воде оснований. Приведем уравнение реакции нейтрализации между едким калием и хлоридной кислотой:

KOH + HCl = KCl + H 2 O

Важное свойство оснований щелочных металлов является их способность реагировать с кислотными оксидами, в результате можно получить соль и воду. Например, пропуская через гидроксид натрия углекислый газ, можно получить его карбонат и воду:

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

К реакциям ионного обмена относится взаимодействие между щелочами и солями, идущее с образованием нерастворимых гидроксидов или солей. Так, приливая по каплям раствор в раствор сернокислой меди, можно получить голубой желеобразный осадок. Это основание меди, нерастворимое в воде:

CuSO 4 + 2NaOH = Cu(OH) 2 + Na 2 SO 4

Химические свойства гидроксидов, нерастворимых в воде, отличаются от щелочей тем, что они при небольшом нагревании теряют воду - дегидратируются, переходя в форму соответствующего основного окисла.

Основания, проявляющие двойственные свойства

Если элемент или может реагировать и с кислотами, и с щелочами - его называют амфотерным. К таковым относятся, например, цинк, алюминий и их основания. Свойства амфотерных гидроксидов позволяют записывать их молекулярные формулы как в выделяя при этом гидроксогруппу, так и в виде кислот. Представим несколько уравнений реакций основания алюминия с хлоридной кислотой и гидроксидом натрия. Они иллюстрируют особые свойства гидроксидов, относящихся к амфотерным соединениям. Вторая реакция проходит с распадом щелочи:

2Al(OH) 3 + 6HCl = 2AlCl 3 + 3H 2 O

Al(OH) 3 + NaOH = NaAlO 2 + 2H 2 O

Продуктами процессов будут вода и соли: хлорид алюминия и алюминат натрия. Все амфотерные основания не растворяются в воде. Добывают их в результате взаимодействия соответствующих солей и щелочей.

Способы получения и применение

В промышленности, требующей больших объемов щелочей, их получают электролизом солей, содержащих катионы активных металлов первой и второй группы периодической системы. Сырьем для добычи, например, едкого натрия, служит раствор поваренной соли. Уравнение реакции будет таким:

2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2

Основания малоактивных металлов в лаборатории получают взаимодействием щелочей с их солями. Реакция относится к типу ионного обмена и заканчивается выпадением осадка основания. Простой способ получения щелочей - это реакция замещения, проходящая между активным металлом и водой. Она сопровождается разогреванием реагирующей смеси и относится к экзотермическому типу.

Свойства гидроксидов используют в промышленности. Особую роль здесь играют щелочи. Их применяют в качестве очистителей керосина и бензина, для получения мыла, обработки натуральной кожи, а также в технологиях производства искусственного шелка и бумаги.

Гидроксиды - это электролит при диссоциации которого в водных растворах образуется катион металла и отрицательно заряженный гидроксид анион.

Гидроксиды кроме: оснований щелочных и щелочноземельных металлов, а также амфотерных гидроксидов - практически нерастворимы в воде.

Основные гидроксиды (основания ) - только гидроксиды металлов со степенью окисления +1, +2

А М Ф О Т Е Р Н Ы Е. Г И Д Р О К С И Д Ы.

Амфотерные гидроксиды - это гидроксиды которые при диссоциации в водных растворах могут образовывать как H + так и OH -

Амфотерные гидроксиды , гидроксиды металлов со степенью окисления +3, +4 и нескольких металлов со степенью окисления +2

Свойства:

1. Амфотерные гидроксиды реагируют со щелочами.

2. Амфотерные гидроксиды реагируют с кислотами.

К И С Л О Т Н Ы Е. Г И Д Р О К С И Д Ы.

Кислотные гидроксиды - гидроксиды, проявляющие свойства кислот - HNO 3 , H 3 PO 4

Свойства:

Свойства кислотных гидроксидов соответственно обратные свойствам щелочных гидроксидов.


Вопрос 18


Вопрос 19 (см. 11 вопрос!!)


Вопрос 20

Понятие функции состояния. Примеры.

Функция состояния системы – некая аналитическая функция, которая зависит от термодинамических параметров системы в данном состоянии. Значение не зависит от предыстории системы, а при переходе из одного состояния в другое не зависит от пути процесса. Определяется лишь начальным и конечным состоянием системы.

∆U 1,2 =U 2 -U 1


Вопрос 21

Соли. Классификация. Структурные формулы. Получение.

Соли:

Кислые 2) Средние 3) Основные

Средняя соль - это электролит при диссоциации которого в водном растворе образуется катион металла и анион кислотного остатка

Условия получения средней соли

H 2 CO 2 +2NaOH=2Na 2 CO 3 +2H 2 O

Средняя соль образуется в том случае когда реакция протекает в строго стехеометрических соотношениях

Кислая соль - это элемент при диссоциации которого образуется катион металла, катион водорода и анион кислотного остатка

Условия получения кислых солей

H 2 CO 3 +NaOH=NaHCO 3 +H 2 O

Кислые соли получается при избытке кислорода.

Основные соли - это электролит при диссоциации которого образуется катион металла гидроксид анион и анион кислотного остатка

Получение:

Кислота + основание

Кислота + основный оксид
кислота + соль
соль + соль

Основание + кислотный оксид
щелочь + соль
основный оксид + кислотный оксид
металл + неметалл
металл + кислота
металл + соль


Вопрос 22

Энтальпия и энтропия образования химических веществ.

Энтропия - функция состояния системы которая показывает направление протекания процессов в природе. Мера хаотичности и неупорядоченности системы.

Энтальпия является мерой энергии, накапливпемой веществом при его образовании

Когда энтропия максимальна, энтальпия минимальна и наоборот.


Вопрос 23

Типы хим. связей.

Электроотрицательность – способность атомов оттягивать на себя электронную плотность.

Ковалентная связь – двухатомная связь, 2 атома и 2 электрона обазательных. (сильная связь, локализованная)

Ионная связь – предельный случай ковалентной полярной связи; электростатическое взаимодействие которое возникает между катионами и анионами.

Универсальная связь – вандервальсовыемежмолекулярные

Специфические

1) Металлическая. Все электроны образуют электронный газ

2) Водородная связь. Основана на свойстве атомов H, связанного сильно электроотрицательным элементом.


Вопрос 24.

2NaOH + CO 2 = Na 2 CO 3 + H 2 O,

основание кислотный соль

Cu(OH) 2 + H 2 SO 4 = CuSO 4 + 2H 2 O,

основание кислота соль

2NaOH + PbO = Na 2 PbO 2 + H 2 O,

основание амфотерный соль

2NaOH + Pb(OH) 2 = Na 2 PbO 2 + 2H 2 O,

основание амфотерный соль

гидроксид

2H 3 PO 4 + 3Na 2 O = 2Na 3 PO 4 + 3H 2 O,

кислота основной соль

H 2 SO 4 + SnO = SnSO 4 + H 2 O,

кислота амфотерный соль

H 2 SO 4 + Sn(OH) 2 = SnSO 4 + 2H 2 O.

кислота амфотерный соль

гидроксид

Амфотерные гидроксиды в реакциях с кислотами проявляют основные свойства:

2Al(OH) 3 + 3H 2 SO 4 = Al 2 (SO 4) 3 + 6H 2 O,

со щелочами (основаниями) – кислотные свойства:

H 3 AlO 3 + 3NaOH = Na 3 AlO 3 + 3H 2 O,

или H 3 AlO 3 + NaOH = NaAlO 2 + 2H 2 O.

    Основания и кислоты реагируют с солями, если в результате образуется осадок или слабый электролит. Слабые кислоты – H 3 PO 4 , H 2 CO 3 , H 2 SO 3 , H 2 SiO 3 и другие.

2NaOH + NiSO 4 = Ni(OH) 2  + Na 2 SO 4 ,

основание соль

3H 2 SO 4 + 2Na 3 PO 4 = 2H 3 PO 4 + 3Na 2 SO 4

кислота соль

Бескислородные кислоты вступают в те же реакции, что и ранее рассмотренные кислородсодержащие кислоты.

Пример. Составьте формулы гидроксидов, соответствующих оксидам: а) FeO; б) N 2 O 3; в) Cr 2 O 3 . Назовите соединения.

Решение

а) FeO – основной оксид, следовательно, соответствующий гидроксид – основание, в формуле основания число гидроксогрупп (OH) равно степени окисления атома металла; формула гидроксида железа (II) – Fe(OH) 2 .

б) N 2 O 3 – кислотный оксид, следовательно, соответствующий гидроксид – кислота. Формулу кислоты можно получить, исходя из представления кислоты как гидрата соответствующего оксида:

N 2 O 3 . H 2 O = (H 2 N 2 O 4) = 2HNO 2 – азотистая кислота.

в) Cr 2 O 3 – амфотерный оксид, следовательно, соответствующий гидроксид амфотерен. Амфотерные гидроксиды записывают в форме оснований – Cr(OH) 3 – гидроксид хрома (III).

Соли

Соли – вещества, которые состоят из основных и кислотных остатков. Так, соль CuSO 4 состоит из основного остатка – катиона металла Cu 2+ и кислотного остатка– SO 4 2  .

По традиционной номенклатуре названия солей кислородных кислот составляют следующим образом: к корню латинского названия центрального атома кислотного остатка добавляют окончание –ат (при высших степенях окисления центрального атома) или –ит (для более низкой степени окисления) и далее – остаток от основания в родительном падеже, например: Na 3 PO 4 – фосфат натрия, BaSO 4 – сульфат бария, BaSO 3 – сульфит бария. Названия солей бескислородных кислот образуют, добавляя к корню латинского названия неметалла суффикс –ид и русское название металла (остатка от основания), например CaS – сульфид кальция.

Средние соли не содержат в своем составе способных замещаться на металл ионов водорода и гидроксогрупп, например CuCl 2 , Na 2 CO 3 и другие.

Химические свойства солей

Средние соли вступают в реакции обмена со щелочами, кислотами, солями. Примеры соответствующих реакций см. выше.

Кислые соли содержат в составе кислотного остатка ион водорода, например NaHCO 3 , CaHPO 4 , NaH 2 PO 4 и т.д. В названии кислой соли ион водорода обозначают приставкой гидро-, перед которой указывают число атомов водорода в молекуле соли, если оно больше единицы. Например, названия солей вышеприведенного состава соответственно – гидрокарбонат натрия, гидрофосфат кальция, дигидрофосфат натрия.

Кислые соли получают

    взаимодействием основания и многоосновной кислоты при избытке кислоты:

Ca(OH) 2 + H 3 PO 4 = CaHPO 4 + 2H 2 O;

    взаимодействием средней соли многоосновной кислоты и соответствующей кислоты или более сильной кислоты, взятой в недостатке:

CaCO 3 + H 2 CO 3 = Ca(HCO 3) 2 ,

Na 3 PO 4 + HCl = Na 2 HPO 4 + NaCl.

Основные соли содержат в составе остатка основания гидроксогруппу, например CuOHNO 3 , Fe(OH) 2 Cl. В названии основной соли гидроксогруппу обозначают приставкой гидроксо-, например, названия вышеприведённых солей соответственно: гидроксонитрат меди (II), дигидроксохлорид железа (III).

Основные соли получают

    взаимодействием многокислотного (содержащего в своем составе более одной гидроксогруппы) основания и кислоты при избытке основания:

Cu(OH) 2 + HNO 3 = CuOHNO 3 + H 2 O;

    взаимодействием соли, образованной многокислотным основанием, и основания, взятого в недостатке:

FeCl 3 + NaOH = FeOHCl 2  + NaCl,

FeCl 3 + 2NaOH = Fe(OH) 2 Cl + 2NaCl.

Кислые и основные соли обладают всеми свойствами солей. В реакциях со щелочами кислые соли, а с кислотами – основные соли переходят в средние.

Na 2 HPO 4 + NaOH = Na 3 PO 4 + H 2 O,

Na 2 HPO 4 + 2HCl = H 3 PO 4 + 2NaCl,

FeOHCl 2 + HCl = FeCl 3 + H 2 O,

FeOHCl 2 + 2NaOH = Fe(OH) 3  + 2NaCl.

Пример 1 . Составьте формулы всех солей, которые могут быть образованы основанием Mg(OH) 2 и кислотой H 2 SO 4 .

Решение

Формулы солей составляем из возможных основных и кислотных остатков, соблюдая правило электронейтральности. Возможные основные остатки – Mg 2+ и MgOH + , кислотные остатки – SO 4 2- и HSO 4  . Заряды сложных основных и кислотных остатков равны сумме степеней окисления составляющих их атомов. Сочетанием основных и кислотных остатков составляем формулы возможных солей: MgSO 4 – средняя соль – сульфат магния; Mg(HSO 4) 2 – кислая соль – гидросульфат магния; (MgOH) 2 SO 4 – основная соль – гидроксосульфат магния.

Пример 2. Напишите реакции образования солей при взаимодействии оксидов

а) PbO и N 2 O 5 ; б) PbO и Na 2 O.

Решение

В реакциях между оксидами образуются соли, основные остатки которых формируются из основных оксидов, кислотные остатки – из кислотных оксидов.

а) В реакции с кислотным оксидом N 2 O 5 амфотерный оксид PbO проявляет свойства основного оксида, следовательно, основной остаток образующейся соли – Pb 2+ (заряд катиона свинца равен степени окисления свинца в оксиде), кислотный остаток – NO 3  (кислотный остаток соответствующей данному кислотному оксиду азотной кислоты). Уравнение реакции

PbO + N 2 O 5 = Pb(NO 3) 2 .

б) В реакции с основным оксидом Na 2 O амфотерный оксид PbO проявляет свойства кислотного оксида, кислотный остаток образующейся соли (PbO 2 2 ) находим из кислотной формы соответствующего амфотерного гидроксида Pb(OH) 2 = H 2 PbO 2 . Уравнение реакции

основные гидроксиды википедия, основные гидроксиды группы
Осно́вные гидрокси́ды - это сложные вещества, которые состоят из атомов металла или иона аммония и гидроксогруппы (-OH) и в водном растворе диссоциируют с образованием анионов ОН− и катионов. Название основания обычно состоит из двух слов: слова «гидроксид» и названия металла в родительном падеже (или слова «аммония»). Хорошо растворимые в воде основания называются щелочами.
  • 1 Получение
  • 2 Классификация
  • 3 Номенклатура
  • 4 Химические свойства
  • 5 См. также
  • 6 Литература

Получение

Гранулы гидроксида натрия Гидроксид кальция Гидроксид алюминия Метагидроксид железа
  • Взаимодействие сильноосновного оксида с водой позволяет получить сильное основание или щёлочь. Слабоосновные и амфотерные оксиды с водой не реагируют, поэтому соответствующие им гидроксиды таким способом получить нельзя.
  • Гидроксиды малоактивных металлов получают при добавлении щелочи к растворам соответствующих солей. Так как растворимость слабоосновных гидроксидов в воде очень мала, гидроксид выпадает из раствора в виде студнеобразной массы.
  • Также основание можно получить при взаимодействии щелочного или щелочноземельного металла с водой.
  • Гидроксиды щелочных металлов в промышленности получают электролизом водных растворов солей:
  • Некоторые основания можно получить реакциями обмена:
  • Основания металлов встречаются в природе в виде минералов, например: гидраргиллита Al(OH)3, брусита Mg(OH)2.

Классификация

Основания классифицируются по ряду признаков.

  • По растворимости в воде.
    • Растворимые основания (щёлочи): гидроксид лития LiOH, гидроксид натрия NaOH, гидроксид калия KOH, гидроксид бария Ba(OH)2, гидроксид стронция Sr(OH)2, гидроксид цезия CsOH, гидроксид рубидия RbOH.
    • Практически нерастворимые основания: Mg(OH)2, Ca(OH)2, Zn(OH)2, Cu(OH)2, Al(OH)3, Fe(OH)3, Be(OH)2.
    • Другие основания: NH3·H2O

Деление на растворимые и нерастворимые основания практически полностью совпадает с делением на сильные и слабые основания, или гидроксиды металлов и переходных элементов. Исключение составляет гидроксид лития LiOH, хорошо растворимый в воде, но являющийся слабым основанием.

  • По количеству гидроксильных групп в молекуле.
    • Однокислотные (гидроксид натрия NaOH)
    • Двукислотные (гидроксид меди(II) Cu(OH)2)
    • Трехкислотные (гидроксид железа(III) Fe(OH)3)
  • По летучести.
    • Летучие: NH3, CH3-NH2
    • Нелетучие: щёлочи, нерастворимые основания.
  • По стабильности.
    • Стабильные: гидроксид натрия NaOH, гидроксид бария Ba(OH)2
    • Нестабильные: гидроксид аммония NH3·H2O (гидрат аммиака).
  • По степени электролитической диссоциации.
    • Сильные (α > 30 %): щёлочи.
    • Слабые (α < 3 %): нерастворимые основания.
  • По наличию кислорода.
    • Кислородсодержащие: гидроксид калия KOH, гидроксид стронция Sr(OH)2
    • Бескислородные: аммиак NH3, амины.
  • По типу соединения:
    • Неорганические основания: содержат одну или несколько групп -OH.
    • Органические основания: органические соединения, являющиеся акцепторами протонов: амины, амидины и другие соединения.

Номенклатура

По номенклатуре IUPAC неорганические соединения, содержащие группы -OH, называются гидроксидами. Примеры систематических названий гидроксидов:

  • NaOH - гидроксид натрия
  • TlOH - гидроксид таллия(I)
  • Fe(OH)2 - гидроксид железа(II)

Если в соединении есть оксидные и гидроксидные анионы одновременно, то в названиях используются числовые приставки:

  • TiO(OH)2 - дигидроксид-оксид титана
  • MoO(OH)3 - тригидроксид-оксид молибдена

Для соединений, содержащих группу O(OH), используют традиционные названия с приставкой мета-:

  • AlO(OH) - метагидроксид алюминия
  • CrO(OH) - метагидроксид хрома

Для оксидов, гидратированных неопределённым числом молекул воды, например Tl2O3 n H2O, недопустимо писать формулы типа Tl(OH)3. Называть такие соединениями гидроксидами также не рекомендуется . Примеры названий:

  • Tl2O3 n H2O - полигидрат оксида таллия(III)
  • MnO2 n H2O - полигидрат оксида марганца(IV)

Особо следует именовать соединение NH3 H2O, которое раньше записывали как NH4OH и которое в водных растворах проявляет свойства основания. Это и подобные соединения следует именовать как гидрат:

  • NH3 H2O - гидрат аммиака
  • N2H4 H2O - гидрат гидразина

Химические свойства

  • В водных растворах основания диссоциируют, что изменяет ионное равновесие:
это изменение проявляется в цветах некоторых кислотно-основных индикаторов:
  • лакмус становится синим,
  • метилоранж - жёлтым,
  • фенолфталеин приобретает цвет фуксии.
  • При взаимодействии с кислотой происходит реакция нейтрализации и образуется соль и вода:
Примечание: реакция не идёт, если и кислота и основание слабые.
  • При избытке кислоты или основания реакция нейтрализации идёт не до конца и образуются кислые или осно́вные соли, соответственно:
  • Амфотерные основания могут реагировать с щелочами с образованием гидроксокомплексов:
  • Основания реагируют с кислотными или амфотерными оксидами с образованием солей:
  • Основания вступают в обменные реакции (реагируют с растворами солей):
  • Слабые и нерастворимые основания при нагреве разлагаются на оксид и воду:
Некоторые основания (Cu(I), Ag, Au(I)) разлагаются уже при комнатной температуре.
  • Основания щелочных металлов (кроме лития) при нагревании плавятся, расплавы являются электролитами.

См. также

  • Кислота
  • Оксиды
  • Гидроксиды
  • Теории кислот и оснований

Литература

  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. - М.: Советская энциклопедия, 1988. - Т. 1. - 623 с.
  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. - М.: Советская энциклопедия, 1992. - Т. 3. - 639 с. - ISBN 5-82270-039-8.
  • Лидин Р.А. и др. Номенклатура неорганических веществ. - М.: КолосС, 2006. - 95 с. - ISBN 5-9532-0446-9.
п·о·р Гидроксиды

основные гидроксиды, основные гидроксиды википедия, основные гидроксиды группы, основные гидроксиды это